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SUMMARY

A method has been developed and used to obtain theoretical pre-
dictions of the current collected from a collisionless, fully Maxwellian_ plasma
at rest by an electrically conducting Langmuir probe having spherical or cylind-
rical symmetry. The probe characteristic, or functional relation between current
and probe potential, has been determined for both geometries for probe radii up
to 100 times the Debye shielding distance of the hotter species of charged
particle, for a complete range of ion-to-electron temperature ratios and for
probe: potentials from -25 to +25 times the thermal energy of the hotter species.
Each current collection result is computed to a relative accuracy of 0.002 or
better in an average time of approximately two minutes on the IBM 709k.

Maxwellian veleccity distributions and finite current collection
are assumed for both ions and electrons. The infinite plasma is replaced by
an outer boundary at a finite radius, beyond which a power-law potential is
specified. The resulting nonlinear system of integral equations is solved by
~an iterative numerical scheme which incorporates an extension of the Bernstein
and Rabinowitz method to provide charge densities for ions and electrons. No
a priori separation into sheath and quasi-neutral regions is assumed. '

Explicit comparison is made between the results for a completely
Maxwellian plasma and those for a plasma mono-energetic in attracted particles,
as treated by Bernstein and Rabinowitz, Lam, and Chen. It is shown that in
certain cases; the mono-energetic plasma does not adequately simulste the Max-
wellian plasma. _ : : :

It is alsc shown that difficulties encountered by Bernstein and
Rabinowitz in computing the ion current for the cylinder in the zero-ion-
temperature 1limit are illusory, and that the computations of Chen for this
case do not take into account the fact that the ion temperature acts as a
singular perturbation.

Computed charge density and potential functions are presented
graphically. Computed probe characteristics are presented in graphical and

tabular form. A listing is included of the Fortran programs used to obtain
these results.
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SYMBOLS

E energy

e cne electronic charge

F force on a particle

f | distribution function; density of particles in position-velocity
space

g inverse of number of particles in a Debye cube

g(t) = (Nm/2) (1 - erf(t) ) exp(t8); function defined in Eq. (E.21)

I collected current for a spherical probe; collected current per

unit length for a cylindrical probe

i = I/Io; nondimensional collected current
i nondimensional current defined in Egs. (13.6)
J angular momentum

k Boltzmann's constant

M(r) mixing function; Section V

m particle mass

N number density

P moment um

qQ charge on a particle

r radius

Rp prgbe radius »

Rp | radius of outer boundary

r position vector

T temperature |

] = Zep(r) + J2/2mr2; effective potential

v velocity ' |

x - Rp/r; ncndimensional inverse radius

2 ~ number of electronic charges on a particle
3 longitudinal cylindrical coordinate
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velocity variable; Section VII
"varies as"

= E/kT; nondimensional energy

(-2./2,4)(E,/kT_); nondimensional energy defined in Eq.(13.7)
cylindrical coordinate
integral operator; Section V
electric potential
permittivity of space

2 \1/2
Debye shielding distance;=(ekT/q°N,)
charge density; = ZeN

= P/Py; nondimensional charge density

Zep/kT; nondimensional potential

J2/2m szkT; nondimensional square of probe radius

xp; nondimensional probe potential

- 7,2 /T_2,; effective temperature ratio

Z_/m Z,; effective mass ratio
n,a_ +

r/7\D ; nondimensional radius used in Sec. XIII

for positive ions
for electrons

for positive ions, but referied to electron tenpérature; defined

at plasma potential

" at infinite radius

at the probe

at the outer boundary

concerning locus of extrema of effective potentials
referring to energy of mono-energetic ions or corresponding

absorptioa boundary
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N for the N'th iteration; Sections V and VI

. net result for ions less result for electrons
r radial
SE at the sheath edge; Section XIII
t transverse
T thermal
vp < O referring to inbound particles
vp > 0 referring to outbound particles

Symools defined and used in Appendixes only

A,B,C variables used in Appendix E
a,b,c,d,e,f variables used in Appendix G
CE = 0.57721566....; Euler's Constant; Eq. (E.53)

Fy,(B) ,H;(u,B), functions defined in Egs. (E.51), (E.46), and {E.68),
Ho(A) respectively

h(t) function used in Appendix F

h,i,j,k,m,n integer variables used in Appendices E,F, and G

Io zero-order Bessel function of imaginary argument; Eq. (E.7¢)
K constant defined in Eq. (A.7);

| variable defined in Eq. (E.55)

KO’KI’KE functions used in Appendix D

Ky . zero-order modified Bessel Function of the second kind; Eq.(E.61)
P(u,N) two functions defined in Bqs. (3.60) and (E.74)

P,Q,R,T variables used in Appendix E | -

8 ' : disﬁance; Appendix A

s | radial variable; Appendices D,E.

s ' = r/ln; Appendix F

t time; Appendix A

t " dummy variable; Appéndix F

W quantity defined in Bc. (E.84)
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dummy varisbles; Appendix E . =~
S > Awg
functions used in Appendix D

nondimensional potential, separate definitions in Append, ¢
Fand G :

quantities used:in Appendix A

dummy variable;.sppendices E,F
.

quantities used §a Appendix E

quaﬁtity defined in Eq. (;A.l)
two functions defin.d in Egs. (E.32) and (E.87)
functions used in Appendix F

subscript referring o field particles; Appendix A

.~ subsecripts referring{ﬁo collisions and deflections,

respectively; Append”?r A.
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1. INTRODUCTION

A methLod has been developed and used to calculate the electric
potential and the space charge density near spherically and cylindrically
symmetric electrostatic probes immersed in a hot, rarefied, fully Maxwellian
plasma at rest, and thereby tc calcuiate the curren* collected by such probes
from the surrcunding plasma. :

An electrostatic or "Langmuir" prohe is a piece of ccnducting
material that is inserted into a plasma or a mechanical support whiﬂh provides
electrical connection frcm the prote to external circuitry (Fig. 1). The
probe potential is varied, slcwly enough to eliminate transient effects, over
a range that normally includes the plasma potential. The electric current
collected by the probe from the plasma is recorded as a function of probe

. potential. The shape cf this curve, known as the "probe characteristic", de-
2 5

pends on the compcsition and the thermeodynamic state of the plasma;, and is
therefore potentially rich in information about the plasma. This

fact has enabled the experimenter to use plasma probes as instruments to mea-
sure the state parameters of plasmas that exist either in the laboratory or
in nature. Figure 2 shows the general appearance of a Langmuir probe
characteristic,

Many examples of ionized gases, or plasmas, exist in nature as,
well as in man-rade devices. The earth's icnosphere, the material of the sun
and stars, and the interplanetary gas are ali naturally occurring plasmas., and
Langmuir probes are frequently carried by spacevraf+ in order to investigate
their surroundlngs.

mhe local disturbances created in the ionosphere ty the entire
spacecraft can often be analysed using theories developed for Langmuir protes.
since the vehicle itself constitutes a conducting object immersed in a piasma;
ir this case there is no external connection to allow current to drain off,
and the spacecraft will arrive at an equilibrium or "floating" potential at whiszh
it coliects no net current (Fig. 2). Man-made devices in which plasmas are
produced include experiments in controlled thermonuclear fusion, communication
devices used in electrical engineering, electric thrusters for space vehicles,
and plasma generators for conversion of chemical into electrical power.

-Arother important type of device is the experimental charber,
often called a "piasma %unnel”, designed for the study of the properties of
the plasma itself. The study of plasmas in these chambers is in many cases of
vital importence in obtaining the hasic information necessary before the
applications listed above can be carried out. One of the most important types
of study carried on in this type of facility has beun the development of various
methods, including Langmuir probes,:for measurement of state parameters, or
"plasma diagnostics". The work described herein has been done as part of a com-
bined activity at UTIAS, one aim of which has been to develop and compare the
use of Langmuir probes, microwaves, and electron beams for diagnostic work.
Details of some of the experimental work that has been done using UTIAS plasme
tunnel facilities, closely related tc¢ the theoretical investigation of Langmuir
probes reported here, are contained in Sec., XVII, and also in Refs. 1,2,3.4,
and 19. Specific results obtained here have been used in carrying out experi- .
ments described in these reports.



A central problem in the use of plasma probes has been the ex-
traction of the desired values of the thermodynamic state parameters from the
information given by experimentally measured probe characteristics. Theoretical
work, including that presented here, has centred around the solution of the in-
verse problem: if one has a plasma of given composition and state, what is the
shape of the probe characteristic? Quantitative answers to this question have
been obtained as a result of this research, for & range of plasma conditions of
broad experimental import.ance.

A plasma probe which is charged to a potential different from
that of the surrounding plasma, will create an electric field which attracts
particles of opposite charge and repels those of like charge. If the probe
potential is large enough, very few of the repelled particles will have
sufficient kinetic energy to reach the probe surface, and a region adjacent to
the probe will contain only attracted particles. The net space charge density
thus created in this region will be of opposite sign to the charge on the probe,
and will tend to prevent electric fields from penetrating into the plasma.
This region of charge imbalance is known as a sheath. Beyond the sheath, the
densities of repelled and attracted charge are very nearly equal, and the
electric field is relatively weak, though still significant.

Any charge imbalance in an ionized plasma sets up electric fields
that tend to limit its extent and neutralize it. It has been shown elsewhere
(Ref. 1) that the sheath thickness is always related to a plasma parameter
known as the Debye shielding distance, which depends on the temperatures and
number densities of the various species of charged particles present. The
ratio of probe radius to Debye distance is therefore one of the factors that
- governs the shape of the potential well that surrounds the probe. Since the
flux of attracted particles reaching the probe can be strongly affected by the
shape and extent of this well, the ratio of probe radius to Debye length has a
strong influence on the collected current. Measurements of collected current
will therefore contain informatlon about the Debye lengths of the various
species,

‘ A charged particle that comes within the influence of the probe
is affected in general not only by the macroscopic electric field surrounding
the probe, but also by the scattering effect of encounters with other particles.
There exists, however, a class of situations, of great importance in experiment-
‘al work, in which a particle will, on the average, traverse a distance equal
to many probe diameters before belng appreciably deflected out of its collisione
less trajectory by such events. It is then a good approximation to assume
that all ‘particles move only along collisionless trajectories, but their initial
velocity distribution far from the probe is the Maxwell equilibrium distribution
that normally exists when collisions dominate. It is this class of situations
that has been considered here.. Limits on the validity of the collisionless
approximation are<disoussed in Sec. III and in Appandix A.

- The: surface of 'y plasma probe is always at a much lower tempera-
~ture than the plasma. As a result, nearly all electrons that strike it are
absorbed, and nearly all ions thet strike it combine with electrons from the
. surface and move off as neutral atoms. These neutrals do- -not interact with
. electric fields and, in the collisionless approximation, are-in efraet removed
from the problem.; ‘




At large probe potentials the attracted species strike the probe
with sufficient kinetic energy to dislodge charged particles from the surface.
Those having appropriate charge are repelled into the plasma and show up as a
contribution to the measured probe current (Fig. 2). This phenomenon is called
secondary emission. Another source of secondary current collection appears
when electrons accelerated to high velocities by the field of the probe collide
with neutrals and ionize them to produce extra electrons. Plasma probes are
normally operated at potentials small enough to prevent these effects from
occurring. 2

- The plasma probes that are used in experimental measurements
may have a great variety of shapes. Since the usefulness of such & probe to
the experimenter is considerably increased if theoretical predictions of its
characteristics are available, the most useful shapes are usually those possessing
sufficiently high symmetry that the dynamics of particle motion in the electric
fields near the probe are of simplified form. In particular, the cases considered
here are those of a sphere or long cylinder in a stationary plasma, or a long
cylinder in a plasma flowing parallel to the cylinder axis. In these cases,
all.particles move in central force fields.

~ A description of related work on the theoretical prediction of
Langmuir probe characteristics is contained in Sec. V, including the pioneer-
ing work of Bernstein and Rebinowitz (Refs. 5 and 2l)fand its extensions by Lam
(Refs. 7 and 27) and Chen (Ref. 8), as well as others.

- II. STATEMENT OF THE PROBLEN

- ~ In order to define a mathematical model for the plasma, the
following assumptions have been made:

1. The plasma consists of two species of charged particles, one
positive and one negative. Far from the probe, the net charge density approache
es zero., Maxwellian velocity distributions are assumed for both species in a
reference frame at rest relative to the probe in the spherical case; at rest
or in uniform motion parallel to the probe axis in the cylindrical case. 'The
latter generalization is a trivial one, but it suggests that the. calculations
for the cylindrical probe may be used to measure the properties of a flowing
plasma if the probe axis is parallel to the flow and if the probe is
sufficiently long that end effects may be neglected. Cylindrical probes are
in fact often used in flowing plasmas because of this analytical advantage
(Refs. 1 to 4).

In many experimental situations, thermal contact between the two
species is weak enough to allow significant temperature differences to exist
between them if one of them acts as an energy source or sink, Therefore, an
arbitrary temperature ratio is allowed in the theoretical model.

2. The plasma is assumed to be sufficiently hot and rarefied that
near sncounters between particles are of vanishing importance in comparison
with collective phenomena, and each particle moves undisturbed in a macroscopic
electric field determined by the Poisson equation. The conditions under which
this approximation is valid are discussed in Sec. III and Appendix A.
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3. Annihilation of both species of charged particles is assumed to

occur at the probe surface. In the situation being considered, in which binary

- encounters are ignored, re-emitted neutralized particles do not interact signi-
ficantly with the plasma. As Berstein and Rabinowitz (Ref. 5) have pointed out,
their solution method, an extension of which is used here, is capable in principle
of dealing with an arbitrary form of charge emission from the probe surface.
This methnd could therefore be used to compute the large potential ends of the
probe characteristics if an appropriate model for bombardment-induced secondary
charge emission were provided. Such a calculation is beyond the scope of the
present work. _

=k, ~ Finite collection by the probe of both ions and electrons is
allowed to occur. In combination with the assumption of Maxwellian velocity
distributions for both species, this provision permits the entire probe
characteristic to be obtained, in contrast with previous treatments (Refs. 5 to
8) which were applicable only to restricted ranges of probe potentials.

5. No magnetic fields are assumed present.
6. A steady state is assumed to exist. T

7. All perticle velocities are assumed to be much smaller than the
speed of light. :

8. In order to define a solution scheme, the infinite plasma surround-
ing the probe is replaced by & surface, concentric with the probe, at a finite
radius. A linear relation between the electric potential and its radial
derivative is assumed at this boundary, corresponding to & potential which varies
as a specified negative power of radius beyond. Charged particles emitted in-
ward from this boundery possess velocity distributions corresponding to particles
Mexwellian at infinite radius, but disturbed by the presence of the given
power-law potential.

' 9. Trapped orbits, if any, are assumed to be unpopulated. The con-
ditions required for the existence of these orbits, which are defined as
bounded orbits that do not strike the probe, are discussed in Sec, VIII, to-
gether with the resulting implications for the usefulness of results calcula-
ted on the basis of this assumption.

III. SCALING PARAMETERS

The net current Ipet collected from a plasma at rest by a probe
of radius Rp is a function of the following quantities:

i) The ion and electron temperatures T, and T.. We define refer-
ence energles ET* = kI+ and Bp = kT_ where k is Boltzmann's constant.
i1) The ion and electron masses my and m_.
111) The ion and electron charges q, = 2,e and q_ = 2_e where e is
one electronic charge and Z is the number of electronic charges per particle,
iv) The number density at infinity of one of the two species, say
N, - No_ is not an independent quantity because of the plasma neutrality condition:

'+
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N, 0, +N_  q =0 | (3.1)

v) ‘ The probe radius R, and probe potential ¢, the latter defined
relative to the potential of the plasma far from the probe.

vi) The permittivity of space € .

The complete family of characteristics for either the spherical
or the cylindrical probe is therefore a functional relation connecting the 11

quantities Ipet, ET+, ET-, m, m_, Qus Ay Neos Rp, ¢p and € .

Since each of these quantities is expressible in terms of the
four dimensions mass, length, time, and charge, there exist seven linearly
independent dimensionless quantities such that the solution of the problem is

a relation among them. These quantities may be found by inspection. The proof

of the foregoing statements may be found in standard works on dimensional
analysis, such as Ref. 9. :

The complete set of characteristics for either the spherical or

the cylindrical probe is therefore of the form F (i Ty T2, T3 wu, ﬂ5,g+)-0,

where these quantities are defined, by inspection, as folIowsf

i /(1.4.) ’

net net

where (I ) is the current of ions that strikes the probe when it is at plasma
potential, i.e., the current due to the -random thermal ion motion in the ab-
sence of electric fields, which for a spherical probe, is given by:

(I+)o = Z+eN;4 RP2 (8r kT+/m*)%, and for

unit length of a cylindrical probe is given by:

(I)g=2,e N, R (27 kTJm)’" ;
7, =Er/EBp_ =T/T
Ty = m/m
3= 2, e b /KT, = xp
m, = By(22e? WEENLE B/, = (7}
™S " /e =2/2. ; ’
NS Sy C WAL Wi

The quantities i,.¢ a.ndw3 may be thought of as the miognl current and
nondimensional probe poteitial. The symbol X, =(ekT/2 denotes the

»




Debye shielding distance of a species of\ charged particle in the plasma, There-
fore T, is:the ratio of probe radius %o 4he ion Debdye distance. The value of
g, represents the inverse of the numver of ions in the volume AD3u The quan-
tities 7+ and Xp are rondimersional variables used later in the fext, in
particular in Seb. IX. Their appearance in Egs. {3.2) constitutes a defini-
tion of them.

It has been shown by Rostcker and Rosenbluth (Ref.10) that in the
limit as g ~» O for each species in the plasma, the Liouville equaticn governing
the particle dynamics reduces tc a form known as the Vlasov equation, a
collisionless-Boltzmanr equaticn in which the force term is obtained from the
solution of the Peisson equation.

‘ The limit g = 0 is the limit of a hot, rarefied plasma;
N@E“3 - 0. It is in this limit that near encounters hetween charged particles
become of negligible importance in compariscn with collective phenomena. For
any finite value of g, a particle can  on the average., traverse only & certain
distance in the plasma tefore being scattered nut of its trajectory by near
encounters. This fact sets an upper limit on the probe size for which resuits
obtainable from the Vlesov equation wilil apply in any given case; in other words,
it determines a Knudsen numi:er, or ratic of peen free path to probe dimension,
which is a functicn of Bp/Ap andé g {Appendix 4;.

By inspectior of theeguatiors for the system in their dirensicn-
less form (Sections ‘X end X7), it can ke shown that the ratic 7p = mym_
enters inte the computat:onal scheme oniy when the net current. is calculated,
Thic ratio may therefore remein unspecified when the ion and electron currents
are computed separately.

It car also ke shown tha% the parameters m = T./T_ ard
75 = Z+/Z_ occur only as & guchient in the equations, except in the equation
for net current. Therefore it is passible tc treat these as one quantity for
computational purpeoses. We accordingly define a new dimensieonless parameter
as follows: .

T W e mee (3.3)

! d A’. ’

We therefcre nave. for either the ion or the electro: current in

the Vlasov limit:
L LiTgX L 7, (3.4)

Usually, Z+ =1 and %_ = -1, so that 7w, hecomegs the ion to
electron tempersturs ratio T,/T.. For this reason, we will cali mg the
"effective temperaturs ratio”, bearing in mind that the results of the cal-
culetions, which sere presented as functions of T,/T., may be applied to the
case of multip., charged ions by scaling this quantity.

Since the mass ratic m, may de left unspecified until net
currents are calcuiated, no distinction exists betwecn ions and electirons in
formulating a scheme for calculating i, or i_ separately. The nondimersional
ion current sollected hy a prcba which ig, for example, ion attracting, vith
given ratios of prove potential tc ion energy. ion to electron effective tempera-
ture, and probe radius to ion Debye leagth, is equal to the nondimensional
electron current collacted hy an electron-attracting probe with the same ratios




of probe potential to electron energy, electron to ion effective temperature,
and probe radius to electron Debye length. It is therefore possible to speak of
the "attracted" or the "repelled" species without further identifying them.

Because the roles of ions and electrons can be interchanged in
this manner, a complete set of values of i(7T6, , 7+) can be used to provide
values of both i, and i., and thereby to obtain "r'xe complete set of probe
characteristics for a given ion to electron mass ratio. Since the relation
between ipqy and xp (or xp ) constitutes & probe characteristic, the solution
of the problem for eIther tﬁe spherical or the cylindrical probe isa two-
parameter family of characteristic curves.

IV, EQUATIONS DESCRIBING THE COLLISIONLESS PLASMA

The system of equations to be solved is as follows (Ref. 5).
Let r be the position vector in physical space and p be its canonically con-
jugate momentum vector (Ref. 11). Let fi(r,p) and f_(r, p) be the distribu-
tion functions in position-momentum space for ions and electrons. Let v be the
velocity vector and t be time. Let F, and F_ be the forces exerted by the
electric field on ions and electrons. Then the collisionless-Boltzmann
equations for a steady-state situation are:

Df of of _
_:.:——:.I'f -—+-£+=0 ()"'01)
Dt or op
Df of of
. — R w— v+ —— P, =0
Dt or @@ -

The content of these equations is that the distribution functions
f, and f_ are constant along particle trajectories in a space of canonical
coordinates (Appendix B).

The electric forces on the ions and electrons are:
g + = 'Z+ Q % » .
- | (4.2)

;_--z_e-%

Let p be the net density of electric charge, and let N, and K_
be the number densities of ions ard electrons. Then Foisson's equation is:

o =-ofc | (4.3)
vhere | ; |
: p=e(Z B, +2.8) ‘ (k)
7




Finally:
N, (x) =j £, (z,¥) a3 v

L,5
N_ () =f £ (ry) Sy )

V. SOLUTION SCHEME FOR COLLISIONLESS-BOLTZMANN EQUATIONS

The most difficult problem in finding a solution scheme for
Egs. (4.1) to (4.5) has been to obtain methods of calculating the number
density N(r) of the attracted species as » functional of potential ¢(r).

In the case of a spherical probe immersed in a stationary plasma,
Allen, Boyd, and Reynolds (Ref. 6) simplified the problem by assuming that
the attracted particles had no thermal motion and fell radially inward toward
the probe under the influence of the electric field. They also simplified the
number density calculation for repelled particles by assuming that the probe was
at a large enough potential to prevent any of them from reaching it. By means
of this assumption and by invoking the continuity equation for the attracted
particles, they obtained an ordinary differentisal. equation which they were able
to integrate numerically to give potential as a function of radius for any given
vg}ue of collected current.

Bernstein and Rabinowitz (Refs. 5, 21) developed a more general
scheme capable in principle of finding N(r) as a functional of ¢(r) for an
arbitrary velocity distribution specified far from the probe, under one re-
striction; namely, that the situation be one possessing sufficiently high
symmetry that there exist constants of the particle motion equel in number to
the velocity coordinates of the particles. This requirement is satisfied if
the particles move in a central force field. They then approximated the velocity
distribution for attracted particles by a mono-energetic one in which all such
particles far from the probe moved with the same speed, all directions of
motion being equally probable. This assumption, toegether with that of zero
collection of repelled particles, also gave them a differential equation,
which they integrated numerically.

 More recently, Lam (Ref. 7) has carried out an asymptotic
analysis on the mono-energetic Bernstein and Rabinowitz differential equation
in the 1imit R, >> Ay, and has cbtained probe characteristics valid in that
limit, in the cases of very large and very small probe potentials. He has
also obtained the leading correction term for expressing mono-energetic
current collection as a power series in Kn/Rp (Ref. 27

 The present treatment, in contrast with these previous onas,
assumes & full poly-energetic, Maxwellian distribution for the attracted as well
as for the repelled species. As a result, the charge density at any given
radius can be shown to depend not only on the local value of the potential at
that radius but on the value of the potential everywhere in the vicinity of
the probe (Appendix E). The system is “erefore not reducible to a | ’
differential equation, and a nonlinear system of integral equations results
vhich has been solved numerically on the IBM 7094 digital computer at the
University of Toronto. This more general procedure iz capable of dealing ,
‘with the mono-energetic assumption as a special case, and.explicit compari- .
son has been made in order to evaluate the errors introduced by this approxi-
mation.

8




The iterative procedure for the numerical solution of the equa-
tions is as follows. An initial trial funection is assumed for the net charge
density. Poisson's equation is integrated to provide the electric potential
and its first two radial derivatives, as functions of radius. Using this
information, the ion and electron collected currents and charge densities are
calculated. The resulting net ~charge density function is mixed with the pre-
vious net charge density to provide a closer approximation to the solution.
This process is repeated until sufficient accuracy is obtained.

The process of calculating the ion and electron charge densities
from a given net density and subtraciing them to give a new net density defines
a non-linear integral operator @ which acts on the N'th iterate PN(r) to give
the next iterate Pyy1(r). The solution to the system is a function which
satisfies p(r) = ®p(r). 1In general, the sequence of functions generated by
the operator ¢ diverges by overshooting the true solution and oscillating about
i* with increasing amplitude (Appendix C). We therefore define a mixing func-
tion M(r) which has the property 0 < M(r) < 1 for any r. We then define a new
iterative scheme as follows:

PreqiT) = M(r)® py(r) + (1 - M(r) ) py(r) (5.1)

Inspection of this equation shows that if Pg,.(r) = Py(r), then
P (r) = (r) as required for a correct solution. An opt form for the
function M?r) is found by computational experiment.

An iterative procedure which resembles in some respects the one

developed here, has been developed by Hamza and Richley (Ref. 22) for use in a
numerical sclution of the Boltzmann-Vlasov equations in a multi-electrode, twc
dimensional ion-thruster geometry. In this procedure, zero charge density is
initially assumed and the twc-dimensional Laplace equation is solved numerically
for the given boundary ccrditions. A steady, parallel beam of ions is then
introduced. By numerically integrating ion trajectories, the resulting
charge density is calculated; the Poisson equation is then solved to find a new
potential configuration. If this new potential is then used as a basis for
another iteration, and the procedure is repeated a number cf times, it is found
to diverge; convergence has been obtained by mixing each successive potential

with the initial pctent.ia.. obtained by solving the Laplace equation. The mixing
function is called a "suppression factor". There is one important difference
between the procedure used here and that of Ref. 26: no solution of the Laplace
‘equation is used here as part of a mixing scheme because such & potential at
 large radii has the wreng dependence on radius (Teble 2) and would csuse une -
acceptably 1arge perturbatinng in chargo densities.

n\.ber of approcchu to t.he problem of obtaining probe
chu'acteristics for a completely Naxwellian plasma have recently been pubnshed.
Hall (Refs. 23, 2k, and 25) has described a nusber of steps leading toward the

: develox-ent of a conmtntion scheme based on an assumed farm for the locus of
extrema in energy vs angular momentum space (Sec. VILI); he approximates the
locus of extrema by a pair of line segments and then iterates to find the best
poseible positions for these lines according to criteria which he has derived.
Based on this method, he has obtained and graphically displayed the first two
terms in an expansion for the ion current collected by & cylindrical probe

in a Maxwellian plasma, valid in the limit of gero ion-to-electron temperature
ratio (Ref. 25)



Maskalenko (Ref. 26) has formulated the general problem for the
cylindrical probe, including expressions for charge density and flux for the
Maxwellian case. He then specializes to the limiting case of large R
and outlines a computation scheme for this limit. At this date he has not yet
published any computed results.

Walker (Ref. 28) has formulated the Maxwellian problem for an ion-
attracting spherical probe at sufficiently large potential to assume negligible
electron collection . He has published a single-parameter family of probe
characteristics which depend only on RP/AD and have apparently been done for
an ion-to-electron temperature ratio of 1, although this point has not been
specified. Few details are given concerning the computation scheme, which is
said to involve no iterative procedure, but only an inward integration from a
set of arbitrarily chosen conditions at some relatively large radius; as in
the mono-energetic solutions of Bernstein and Rabinowitz (Refs. 5 and 21) the
probe radius is left unspecified. From the point of view of this investigation,
it is difficult to see how this can be done without introducing some unspecified
approximation, since unlike the mono-energetic case, the charge density at any
radius in the Maxwellian case depends on the form of the potential over a
continuous range, in general, of both smaller and larger radii (Appendix E).
Furthermore, in the Maxwellian case, unlike the mono-energetic case, there is
no range of situations in which the specific value of the probe radius can be
ignored, because there are always some energy levels in the distribution function
for which the probe does not lie "hidden" inside the corresponding absorption
radii (Sec. VIII).

Reference 29 contains analytic approximations constructed from
the probe characteristics of Ref. 28 by a curve-fitting process.

Preliminary results of the computations described in the present
treatment have been reported in Refs. 2 and 20.

VI. CALCULATION OF THE CHARGE DENSITIES

The solution of Egs. (4.1) uses an extension of the methcd of

Bernstein and Rabinowitz (Ref. 5). In situations possessing sufficiently high
symmetry, such as those considered here, all particles move in a central force
- field, and there exist constants of the motion equal in number to the velocity
coordinates of the particles. In this case, the integration over velocity space
in Eqs. (4.5) can be transformed into an integration over the ranges of these
constants. Velocity coordinates are thus eliminated from the problem and :
particle trajectories need not be calculated explicitly in order to find N+ and
N. for a given potential function ¢ . The effect of the potential on the
particle densities makes itself felt in the existence of forbidden regions
in the phase space defined by the constagts of the motion. In these regions,

no particles can exist and the distribution functions vanish. This method

is discussed in detail beginning with Sec. VII. o

The eliminution of explicit trajectory calculations in this
manner is of crucial importance in formulating a scheme for calculating charge
densities. A situation possessing less symmetry, and therefore requiring such
trajectory calculations, for example, a sphere in a flowing Maxwellian plasma,
would involve numerical trajectory computations of such magnitude as to appear
prohibitive. This is particularly true for an iterative calculation such as
this one, in which ¢ itself is only one member of a sequence of functions ¢y
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which have the true solution as *heir limit, and N, and N_ must be determined
anew during each iteration.

Furthermore each complete set of iterations defines a solution
for only one value of nondirensional probe potential and one value of each non-
dimensional plasma parameter (Eq. 3.4); in a flowing plasma, the flow velocity
it.self would require the inclusion of additional parameters to describe a given
case.,

Vil., SPHERICAL PROBE

The velocity of a particzle passing through any point in & spheri-
cal coordinate system may be resoived into a radial component v, and two trans-
verse components which specify the projection of the velocity vector in a plane
perpendicular to the radius. If we take polar coordinates t and @ in this
plane, then we obtain for either ion or electron number density, from Eq. (4.5):

Nr) = [ t(x,y)dv, dvy vy d @ (7.1) |

For all situations tc be considered, the distribution functior
is isotropic at infinity and all electric fields are radial. Hence f depends
only on r, vp, and Vi, and not on . We may immediately integrate Eq.(7.l)
over a tc obttain:

Vt-w Vr»“ _
B =7 [ [T e v ave alv?) (7.2)
-O vr---m

The appropriate constants of the motion are the total energy =
and angular mcmentum J of a charged particle:

E = Zed(r) + % (vr2 + Vta)
. { .
t
The inverse relationships are:
oot o)) - m e P |
(7.4)

v,2 = 32/u? r

g The 1nr.egution over velocity space in Bq. (7.2) may now be
transformed into an integration over E and J2

N(r) = "fszkm £(E,J) oMy Yy ) 4B a2 | (7.9)

The limits on the integration over E represent the fact tha% E
goes from O to e once for positive values of v, and again for negative values
of Ve This point is made clearer Ly the folliwing discussion.

1



&
=
o
N

&

At a given radius in position space, the integration along vy
must be considered separately for im-oming particles (vr'< 0) and outgoing par-
ticles (v, > 0). In any central force field, the incoming and outgoing halves
of a particle trajectory are mirror images of each other. Tharefore, in any
region of the (J2 E) plane in which an outgoing particle may exist, e.,
which represents a particle trajectary that does not strike the probe, the
particle must be counted twice at thg radius r, since it appears once inbound
and once outbqund. Therefore,

£(E, 32) o= £(E, J2)V and f = 2f

>0 <0 v <O .

r r

In any region of (J2, E) space which represents trajectories
that strike the probe no outbound particles exist at the radius r. We {_ .en
have fvf>o Oand f = fv <0. Finally, there exist regions of (J » E) space
corresponding to partlcles which d¢ not reach the radius r because ghey have
turned back at larger rudii. In thes® regions, f = 0. The integration may
therefore be taken over incoming particles only, with f = Vr<0’ where X = 0,
1, or 2. :

o

We now examine a sequence of particle trajectories which corre-
spond to a fixed value of E and-increasing values of J2. The trajectories be-
longing to such a sequence cross any given radius'r in an increasingly tan-
gential direction, as can be shown by inspection of Eq. (7.4). The distance
of closest approach to the origin r =0 for partlcles which come from ine-
finity will always increase with increasing J2. Therefore there will always
be a largest angular momentum J, for which particles still strike the probe,
(This does not always correspond to grazing incidence at the probe surfe le;
see for example the set of particle irajectories shown in Fig. id.,) For all
values of J2 from O to J12, it follows that K = 1.

Similarly, for a fixed E, there will always be a larges) wngu-
lar momentum Jp > J) for which particles still penetrate inward as far as any
given radius r; at this radius, a particle with energy E agd angular momentum
greater than Jo is forbidden. For values of J between J,“ and ¢ 02 » we then
have K = 2; for larger velues of J2,-we have K = 0.

We evaluate the Jacobian in Eq. (7.5) t? obtain:

o
"“'i‘

N(r) = % j K(E J )fv,,,OLE 47 ! dJ2/ {2/ Z/m(E Zep(r))-d2/nr 2}
=0 (7.6)

If the velocity distnj ~ution does not depend on J. as is the ~
case for all distributions to be confidered, then f = f(E) _and the integratiou
over J may be immediately carried ouf over all ranges of J2 in which the value
of K does not change. The result will ™e the sum of a number of integrated
terms, one for each end of each of theu. "*“i&s. For compactness of notation,
we define K, as the value of K correspondi %0 all values of J between Jp.l
and J, where n=1or 2., For convenience 33' ~\80.define a zero value of
angu_ar momentum Jy. We note that by the de:  #tion of K, we have K;=1 and
K2 = 2, We then obtain: .
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Ky,

Jn(ﬁsr)

. ® 2 - .
M) < - & [ amey, o)) K, {en(zen(s)) - 7 P o
m %o n=1 . o Jn_i(E,l‘) L

The value J, is both the lower 1imit of the region in which

K = K, = 2, and the upper }1m1t of the region in which K = K; = 1. Accordingly,
the summation indicated in Eq. (7.7) may be condensed by combining the corre-
sponding pair of terms. In order to preserve compactness of notation, we de-
fine quantities Ky and K,, which are ‘both zero, and then define the quantity
Q = K _1-Kp; we then h ée Q = -1, QQ = -1, and Q3 = 2, Equation (7 7) then
reduces to: :

=

o1 [* gp |
N(r) = - £ i vKo(E)z

e . o n—l

<

2| 2 (52e(e) ) - f/‘re}? ()

0 = Jo‘f_ Iy (_E) < Js »(E,r)

This formal way of expressing the number density N(r) will pfdve
%o be of advantage later in calculating specific yalues of this quantity. 1In a
number of situations, a1t will be found that some or all of the quantities JO,

&y, and Jp will coincide in certain ranges of E, and the summation in Eq. (7.8)

11 consist of fewer than the indicated three terms in these saxme ranqes of E.
Phese points w1ll become clear later (Appendix E).. :

We see that the 1ntegrat10n over velocity space in Eq. (7. l)

has been reduced.to the calculation of a set of line integrals over paths

22(E) in the (J2,E) plane. These paths are characterized by-the- fsct that K
takes on different values on either side of them. It is therefore necessary
to consider within what regions of the (J2 E) plane an incoming particle will
strike the probe, within what regions it flies by the probe and within what.
regions its existence at a given radius is forbidden. This question is
,sttﬂied in See, VIII. T \ I s e,

) “The current of a glven specle: of particle in the plasma,

collected by ‘the probe, is given by: -

I= [ bre® Zej f"r<0' (r,v)

N

Vr

Jae ] | (7.9)
v | r=Rp \ |

This integration mey be transformed in & manner similar to
Eq. {7.5), into an integration over (J%,E) space. Since we intend to study
only situations in which er<o does not depend on J2, the result is:

®ge [ )
1. M52 l; fypeo (E) 912 (E) cE (7.10)

The quantity of interest for experimental maasurements is the
net current Ipe, which may be obtained as follows, after Eq. (7.10) has been
evaluated for each of the species of charged particles:
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»ﬁmtzl-flr;1+'~'21 R | ‘»' (7.11)

In thls study the veloc1ty distribution at 1nf1n1ty for each
- bpéCleS is” taken as a Maxwe111an distributlon Sfunction: :

S ~é‘2 _E/kT o
f(E) = Ne 2n?k T;) / e f/ "l_‘ o (7.12}k

For purposes. of compar1son with work by other authors who employ-
ed mono-energetic distributions for the attracted species (Sec. V), we define a =
mono-energetlc velocity distribution corresponding to particles which have no pr°
ferred direction of motion and whick each possess an equal amount of total enérgy
which we call Ey. If 8(x) is the well-known Dirac delta function, theh this

- distribution is: :
N 2 N ..
me N 5(E - EM)
: ~ 1
har (2m EM)'a‘

,f(E) - - (7.13)

An energy EM must now be chosen which w1ll cause the mono-energeulc

: dlsTrlbutlon to best approximate the Maxwellian distribution which ¢orresponds to
the tomperatuze T. In order to do this, we choose the value of Ey which will
cause & low-order moment of the. vono-energetle‘dlstrlbution to coincide: with

.. the same moment of the Mahwellldn.‘ It has been suggested by ‘then (Ref. 8) that

the most suitable moment is the random flux, this_equates the.current collected
by a probe at plasma potentlal. Equating this for both_dlstrlbutlons, we obtain,
for the spherical probe: B ’ ’ -

in

YIII. ANALYSIS OF PARTICLE ORBITS

~.

It we eliminate vy from Egs. (7.3), we obtain:
E - (2ep(r) + J2/2mr2) =m vr2/2 (8.1)

Ihe term Ja/anuﬁ in this equation expresses the effect of angular momentum of
zircunferential motion of o particle on its radial motion. The form of this
equation shows that this term is in effect a repulsive contribution to the
potenti 1 energy. Accordingly, we define as follows an effective gotential
energy U for the motion of a particle possessing angular momentum

= Zeg(x) + Ja/2mr2 - (8.2)

A particle with a particular J2 and E can reach & particularr
snly if E = U(r) > 0. The relation E = U defines a straight line in the (J°,E)
plane, having a positive slope equal to 1/2mré . Below this line, particles
cannot exist. This line will therefore be called the "cutoff boundary" corre-
sponding to the radius r.
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It is also possible for a particle which is not prohibited from
n particular r by the E < U condition to be prevented from penetrating inward
to this radius by a potential barrier at a larger radius. In other words, a
particle corresponding to the values E and J2 will exist at a particular r if
and only if E > U(r') for all r' > r.

' Any particle able to exist at the probe surface will be absorbed
by the probe. Therefore, unless potential barriers exist at larger radii, all
partlcles will be absorbed by the probe above the line:

E = Ze¢ +J/2me2

(8.3)

The general appearance of the (J2 E) plane is shown in Fig. 3a
for an attracting probe (Ze ¢, < O for the species under consideration) and in
Fig. 3b for a repelling probe” (Ze ¢p > 0), unless potential barriers intervene.

These diagrams are drawn for some specific radius r. They show
the location of the cutoff boundary conresponding to this radius; they also
show the location of the line correspomding to Eq. (8.3), which represents the
cutoff boundary corresponding to r = Rb. Values of the integer Q defined in
Sec. VII, corresponding to these boundaries and to all other boundaries across
which the integer K (Sec. VII) changes, are also shown. The quantities B and
8 shown in these diagrams are nondimensicnal equivalents of E and J2 defined
in Sec. IX. For an attracting probe, it can be shown that potential barriers
do not intervene to alter these diagrams if potential falls off with increasing
radius sufficiently slowly;for a repelling probe, the necessary condition is
that the potential be monotonically decreasing. These statements are discussed
in greater detail later in this section.

It is now necessary to examine the influence of potential
barriers on these diagrams.

Figures 4a and 4b show families of curvgs of effective potential
U as a function of r, sketched for various values of J<, corresponding to
attractive potentials Zep(r) which decay more rapidly or more slowly than an
inverse square potential, respectively. Examination of the expression for U
(Eq. 8.2) shows that if ¢(r) decreases more steeply with increasing r than an
inverse square law, then the term J /2mr2 will dominate at large enough radii
and the term Ze¢(r$ will dominate at small radii. Since J2/2mr2>0 for any non-
zero value of J, and Zep(r)<O for an attractive potential, the effective
tential will heve & maximum at some value of r. For a larger value of J2
this maximum will occur at a smaller redius. g(r) gecreases more slowly
than an inverse square potential, then the term J will dominate at
smaller radii, and the term Ze¢(r) will dominate at larger radii, producing a
minimum in U(r).

po-

As Fig. le illustrates, if a maximum occurs in a curve of effective

potential corresponding to a particular value of J2, all garticles coming from
infinity whose trajectories correspond to that value of J¢ and to energies E
less than the value of U at the meximum, are prevented from penetrating inward
past the maximum and therefore do not. reach the probe. Therefore, if an
attractive potential ¢(r) is a steeper function of r than an inverse square,
potential barriers exist which decrease the current collected by the probe.
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We now examine, with reference to Fig. La, a sequence of tra-
Jjectories corresponding to some given energy E, and to increasing values of J.
As J2 is increased, the corresponding curve U(r) moves upward until the maxi-
mum in this curve becomes equal to E. No trajectories corresponding to larger
J2 can reach the probe, or even penetrate inward as far as the radius at which
the maximum of U(r) is just equal to E; we will call this radius ry(E). We
also see that any particle with energy E that does penetrate inward to this
radius must have an angular momentum small enough that it will reach the probe
and be absorbed by it; we therefore call rM(E) the absorption boundary
corresponding to the energy E. Figure Ld shows such a sequence of trajectories,
and also shows the location of ry(E). As E is increased, ry(E) is decreased,
until for sufficiently large E, ry(E) = Rp. For larger values of E, there
exist no corresponding absorption radii, and the maximum value of Jé for which
such particles still strike the probe is given by Eq. (8.3). A sequence of
trajectories corresponding to such a value of E, and increasing values of J2,
is shown in Fig. 4e. For such a sequence of trajectories, i.e. when no absorp-
tion radius rM%E exists for the energy E, current collection is said to be
"orbital-motion-limited" at the energy E.

The orbital-motion-limited current represents the maximum
current of particles of energy E that can be collected for a given probe
potential and given distribution of such particles at infinity, in the
collisionless case. This is true because the presence of potential barriers
can only decrease the number of particles of this energy which reach the probe.
If the current is orbital-motion-limited for all values of E corresponding to
particles which come from infinity, then it is simply described as orbital-
motion-limited. This terminology has been used by previous authors, though it
may be considered as not very illuminating.

We now examine & sequence of cases in which the probe potential
and all other nondimensional parameters are held constant except that the ratio
of probe radius to Debye length is increased. Since the thickness of the sheath
adjecent to the probe is always of the order of a few Debye lengths (Sections
XV and XVI) the potential well surrounding the probe will contract and steepen,
and, in general, an increasing number of particles will be prevented by potential
barriers from reaching the probe, so that the collected current will decrease,
Since there is always a largest energy E for which there still exists outside
the probe an absorption radius ry(E), we expect that this largest E, which we
call Ey, will increase as RP/AD s increased.

We may now infer some differences which we may expect to see in
the collected current as Rp/AD is increased, depending on whether the distribu-
tion of attracted particles is Maxwellian or mono-energetic. First, the current
collection for mono-energetic particles need only be orbital-motion-limited at
one energy in order to be completely orbital-motion-limited, so we expect
current collection in this case to remain orbital-motion-limited for larger
values of Rp/kp. Also, we may expect current collection in this case to Ge-
crease more suddenly once it is no longer orbital-motion-limited, since in the
Maxwellian case current collection is an integral over contributions from many
energies, each of which will cease to be orbital-motion-limited at a different
value of RE/AD. Both of these expectations are borne out in the computed re-
sults (Sections XV and XVI); in fact, in the mono-energetic case, curves of
current collection vs RP/AD_ actually have a discontinuous slope at the value
at which current becomes no longer orbital-motion-limited.
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Another type of orbit which exists when absorption radii are pre~

sent is shown in Fig. le; this diagram shows an orbit corresponding to the same
values of J2 and E as a particle coming from infinity, but which connects with
it nowhere, and originates and ends at the probe surface. This orbit lies
entirely inside rm(E) whereas the other orbit lies entirely outside ry(E).
Such an orbit can only be populated by emission from the probe surface, which
we have assumed does not occur, or momentarily, by a collision; the population
of such orbits is a negligible problem in comparison with the more serious one
of trapped orbits.

. Such trapped orbits exist when minima of effective potential
occur, such as those shown in Fig. 4b; an example of a trapped orbit is shown
in FPig. 4f. Trapped orbits and their implications are discussed in detail later
in this section. ' '

[

A more complicated situation than those of Figs. la and 4b is
shown in Fig. 5a, which shows a_family of effective potential curves, corre-
sponding to verious values of J, for a case in which the dependence of o(r)
on r is steeper than an inverse square at some radii, and shallower at others.
In this case, trapped orbits, orbits unpopulated because they originate at
the probe, and potential barriers, are all present. This situation is typicel
of potential configurations actually found to exist in many cases; variations
of this situation also occur, as discussed later in this section. We also
note that in the situation shown, the smallest absorption radius that. is presext
dnes not lie immediately adjacent to the probe surface but is at some distance
from it.

We now proceed to derive a more quantitative manner of dealinrg
with the effects of potential barriers; this formulation will be essential in
constructing a calculation scheme.

Since v?¢ = - p/e and p is finite everywhere, W is continuous
everywhere. Therefore, ¢ is a continuous, smooth function of r. By its de-
finition, Eq. (8.2), U is therefore a continuous, smooth function of r. Since
¢ -0 as r -o, U-0 also. We also have E 2 O for any particle coming in
from infinity. Therefore, if U(r)< E and U(r')> E for some r' > r, i.e. if the
corresponding orbit is unpopulated at r, then U must have a maximum at some
radius r"larger than r. The maximal value U(r") must be greater than E.

In Pigs. 4a, 4b, and Sa, all points (r", U(x") ), where a maxi-
mum or a minimum occurs in & curve of effective potential versus radius, have
been joined to generate a curve called a locus of extrema in the (r, U) plane.
The orbit corresponding to & given J2 and E will be unpopulated at the radius
r if the locus of extrema attains a value of U greater than E, at the point
whére it crosses  the curve U(r) corresponding to J2, for any r' greater
than r.

The locus of extrema of the curves U(r) is therefore of primar
imporantance in the analysis of particle orbits and the determination of Jl(E
and Jé(E,r). Each point on this locus of extrema crosses a specific curve of
effective potential, corresponding to a specific value of J2. Furthermore,
it crosses at a specific value of U which corresponds to a specific energy
level E = U._ Each point on this locus of extrema therefore corresponds to a
particular J2 and E as well as a particular r; therefore, for & given potential
function ¢(r), the locus of extrema iefines a curve in the (32,B) plane having
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r as its parameter. It will be shown below that this curve is a well-behaved
function of ¢ and &b/dr and always has a positive slope which decreases as r
increases. It may, however, contain one or more cusps.

The foregoing statements may now be given a geometrical inter-
pretation in the (J2,E) Plane; namely, any point in this plane will be unpopu-
lated at a radius r if any portion of the locus of extrema corresponding to
radii greater than r passes above it, i.e., attains a greater E for the same
value of J2, :

The defining condition for the locus of extrema is
au \ _
<a>-°
J

If we define the subscript G as referring to the locus of ex-
trema, we obtain:

I = md ze @ (8.4)
Substituting this result in the relation:
E = Zep(r) + J°/2mr® (8.5)
we obtain: .
B = ze (6() + g%) ' (8.6)

If Bq. (8.5) is differentiated with respect to r and the result-
ing equation is solved together with Eq. (8.5) to obtain expressions for J2 and
E, these expressions are identical with Eqs. (8.4) and (8.6). The procedure
Just described is the standard technique for obtaining the parametric form of
the curve which is the envelope of a family of straight lines whose generating
parameter is r. This means that the curve (Jg2(r), Eg(rz ) is the envelope of
all the straight lines represented by Eq. (8.5) in the (J¢, E) plane. The locus
of extrema is therefore tangent to the straight line given by Eq. (8.5) at the
point on the locus corresponding to the conditions at r. The slope of the
locus of extrema must therefore decrease toward zero as r increases.

It is now possible to draw the (J2,E) disgram correapogding to

Fig. 5a. This diagram is shown in Fig. 5b. The integration paths Jn(E) re-
uired to integrate Eqs. (7.8) and (7.10) or their cylindrical analogues Eqs.
?10.6) and (10.8) can be seen on this diagram. It is instructive to trace in
detail these integration paths, in order to obtain a clear picture of what is
involved in the integration of these expressions. The integration path g 2(g)
corressonds in this diagram to the line that is labeled AB; the paths Jy ?R)
and J,°(E) correspond to the loci labeled CHF and CHLG, respectively. At
larger values of r, the point of tangencz of the cutoff boundary (8.5) slides
along the locus of extrema. The path Jo°(E) must be modified qualitatively at
these larger radii. Figures 6a to 6¢c show the resulting appearance of thg
(J2,E) diagram for three successively larger values of r. Inar . 6a, Jo°(B)
corresponds to the locus labeled CHEG; in Figs. 6b and 6c, J,°(E) corresponds
to the loci labeled CDE and CD, respectively. Qualitative departures from the
situation shown may also occur for potentials U(r) which have other shapes, so
that the integration paths examined here are only a small sample of the many
configurations that are possible.
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Some further progerties of the locus of extrema are of importance.
Exemination of Eq. (8.4) for Jg© and Eq. (8.6) for E; shows that both of these .
quantities are able to take on negative values. For example, JG2 will actually
do so in the case of either a repelling potential or an attracting one that is
non-monotonic in form. It 13 therefore possible for the locus of extrema to
enter any quadrant of the (J ,E) plane, but since negative values of J2 are
physically meaningless and particles coming from infinity always have E > O,
this curve becomes of importance only when it enters the first quadrant. Since
the locus of extrema is tangent to the cutoff boundary (8.5)at the point
(JGE(r), E(r) ), it always has a positive slope which decreases as r increases.

oA i

The locus of extrema itself possesses maxima and minima in the
(r,U) plane. An extremum in the locus of extrema corresponds to extremal values
of both Eg and Jg@ simultaneously (Fig. 5a), and therefore has two defining
conditions, both of which are equivalent. These are:

dE aJ 2
G _ _G _
_a? = dl’ -O (8.7)

‘The first relation gives:

+£i243>=o (8.8)

2 dr2

The expression for dEg/dr, which is equated to zero in Eq. (8.8),
represents the slope of the locus of extrema in the (r,U) plane. Positive or
negative values of this slope ccrrespond respectively to regions containing
absorption boundaries or trapped orbits (Figs. 4a, Ub, 5a). Numerical tests
of the sign of this quantity therefore provide essential irformation for the
computation scheme by determining the nature of the potential generated during
each(iter;t:lon. This quantity will reappear later in nondimensional form in
Bq. (E.29).

Since the locus of extrgma always has a positive slope in the
(JQ,E) plane, and since dr and dJg/dr always change sign simultaneousiy,
therefore an extremum of the locus of extrema in the (r,U) plane always pro-
duces a cusp in the (J,E) plane. Two such cusps are visible in Fig. 5b and
in Figs. 6a to 6¢c.

: A potential may De envisioned that would be sufficiently irregular
.in form to cuuse'dngjdr and dJg/dr to change sign several times and thereforec
produce & locus of extrema having several cusps, corresponding to multiple .
systems of potential barriers. Situations of this type were in fact found to be
generated as transient phenomena by the iterative scheme. In order to continue
the calculations beyond this point, it therefore became necessary to incorporate
into the program an ability to calculate charge density even in these situatiors.
It was feared that the use of approximate calculations at this stage might dis-
turb the computation enough to keep it from converging to the true solution.

It was also considered dangerous to ignore the possibility that in some cases
even the final solution might have such a configuration. The detalled study of
these multiple-cusp or multiple-barrier potentials, such as that made here,

has therefore been an essential part of this investigation. )

Figure 7 shows soms possible potential configurations, together
with the resulting forms of the locus of extrems in the (r,U) plane, and its
corresponding forms in the (J2,B) plane. The 10 specific cases shown in Fig. 8
have besn incorporated into the computation scheme.
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The dotted curves in this figure represent segments of the locus
of extrema which may enter the first quadrant but which do so in such a manner
as not to influence any of the particles which strike the probe. Fo~ example,
the presence of any of the dotted segments in cases 5 and 6 in this figure
would represent situations in which the current collection was still orbital-
motion-limited, but the charge density at certain radii was affected by
potential barriers.

This examination of the behaviour of the locus of extrema has
until now considered only the case of an infinite plasma. However, it has been
pointed out earlier (Sec. II) that the calculation scheme defined here makes
use of an outer boundary at finite radius. In general, the presence of any
boundary of this type makes it necessary to modify the preceding discussion;
however, it can be shown that no such changes are necessary for the particular
boundary conditions specified here. To prove this will be the purpose of the
following discussion.

The asymptotic potentials for large radius, ¢ a r2 for a
spherical probe and ¢ a r-l1 for a cylindrical probe, derived by Bernstein and
Rabinowitz (Ref. 5), lead to the relations:

ap/ar spherical probe

dp/ar
These relations are used as boundary conditions on Poisson's

equation at the outer edge r = Rg of the computation net. Appendix D derives
in detail the resulting method for integrating the Poisson equation.

&
Es

(8.9)
- ¢/r cylindrical probe

Examination of Eqs. {8.4) and (8.6) for a power-law potential
® o r-R shows that the locus of extrema does not enter the first quadrant
of the (Jz,E) plane for n < 2. Since this condition 1s satisfied in both the
spherical and cylindrical ‘cases for the power-lav potentials assumed beyond
the boundary, the locus of extrema enters the first quadrant only for r <
This fact is of advantage in devising the scheme for calculation of the charge
densities for r < Rg. It means that the foram of the potential beyond the ‘
boundary has no ‘effect on the formulation of these caleulations. -

As & result, it is possible to clleull&e both the attracted and

,repelled charge densities while leaving the precise dependence of potential on

radius beyond the boundary unspecified; this dependence enters the oblen only

" as & boundary condition on the integration of the Foisson equation (Appecdix

The introduction of this pover-lavw boundnry condition is ot
crucial importance in defining a workable computation scheme, becouse the

- fact that the assumed potential at and beyond the boundary is a close approxi-
mation to the actual potential in the infinite case means that the outer boundary

can be placed much closer to the probe without significantly disturbing the
computed results than would be possible for the mo-: obvious assumption of a
boundary held at zero potential. This matter is di. ‘ussed in more detail in
Appendix H.
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It may be seen from Figs. 4b and 5a that if dE,/dr is positive
over some range of radii, a family of minima in curves of effective potential
will exist in this range. These minima form potential wells which are capable
of trapping particles in bounded orbits that do not strike the probe surface.
An orbit of this type is illustrated in Fig. 4f. As Bernstein and Rabinowitz
(Ref. 5) have point out, these orbits can be populated by collisions, no
matter how infrequently such collisions occur. This effect occurs because
these collisions are capable of changing the energy and angular momentum of
a particle at some radius to values corresponding to those of any trapped orbits
that exist at that radius. A particle thus "knocked into" a trapped orbit will
remain in it until another collision knocks it out again. Appendix A imposes a
modification on this argument; it is shown there that it is much more common
in general for charged particles to be scattered out of their collisionless
trajectories by numerous small-angle encounters than by large angle collisions.
Thus particles will tend to "drift into" or out of trapped orbits instead of
being knocked into them. In any case, the resulting contributions to charge
density cannot be calculated by the collisionless theory used here.

Since the assumption has been made (Sec. II) that all such po-
tential wells are unpopulated, the results of this investigation may be of re-
stricted use to the experimenter in any situation where these results predict
the existence of potential wells. An exception to this will occur if an experi-
mental situation arises in which the population of these orbits can be shown
to be negligible. It may be argued that this occurs for a cylindrical probe;
even when the length-to-diameter ratio of the probe is large enough for the
infinite-cylinder results obtained here to be useful, the trapped particles
may still be expected to leak out of the ends of the geometry rapidly enough to
prevent appreciable charge accumulation. Moreover, if the plasma is flowing
parallel to the cylinder axis, nearly all trapped particles will be carried
downstream by their longitudinal velocity.

This is a fortunate coincidence, because the cylindrical probe
can be shown to be a_ways surrounded by trapped orbits, which exist everywhere
outside a certain radius. Substitution of ¢ & 1/r, the asymptotic potential
for large radii, into expression (8.6) gives a form for Eg vhose radial deriva-
tive is always positive in the case of the attracted species. As the probe
potential is increased, the innermost radius of thase trapped orbits moves out-
wvard. At sufficliently large probe potentials, a second, inuer family of trapped
orbits forms adjacent to the probe. The outer boundary of this family thcn noves

s outward upon further increase of prove potential.

B In contrut with this situation, the spherical. probo, vhose
asymptotic potential ¢ & 1/r2 is steeper than that for a cylinder, develops
only the irner family of trapped orbits. In both the spherical and cylindrical
cases, the potential in the vicinity of the probe will be more shallow in form
for smaller ratios of prcbe radius to Debye length, and the inner family of .
trapped orbits will begin to appear at suner probo potentials.

It should be noted here that qualitative reasoning of the type
presented above to argue for the non-population of trapped orbits around a
cylindrical probe, is often dangerous. The final answer to this quution must
uluutol.ycmetmam complete theory or from experiment.,

Although the collisionless theory developed here cannot be used
to predict ‘the effect on the couecua current of trupped-ordbit population, an
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argument may be advanced to sugg=st whether the effect will be to increase or
decrease the collected current in any given case. If trapped orbits near the
probe are populated, the density of the attracted species will be locally
increased. Examination of the Poisson equation (4.3) shows that the magnitude
of V2 near the probe will be increased, tending to increase the curvature of
the potential well near the probe and hence to cause the potential well to
steepen and contract. Particles which would otherwise have orbited into the
probe will miss it and the collection of the attracted species will be decreased.

This argument is subject to the same warning as the preceding
argument. However, it may be made more convincing by examination of a related
effect., Calculations have been carried out in this investigation for the case
in which the distribution for repelled particles is replaced by one corresponding
to the simple "Boltzmann factor" law (Eq. 13.13). This situation corresponds
to repelled particles which are not absorbed or annihilated at the probe sur-
face dut simply "reflected" by it. These calculations are discussed in greater
detail in Sections XIII and XV; their relevance here is that they correspond to
an increase in the density of the repelled rather than the attracted particles
near the probe and therefore constitute the converse of the effect of populating
the trapped orbits. As is shown in Sec. XV, the attracted-species current is in
all such cases increased above corresponding values calculated for a completely
absorptive probe. Therefore, if trapped-orbit population increases the attracted-
species density near the probe, we may indeed suspect that the attracted-species
current will decrease. In other words, the results presented here will in this"
case form an upper bound.

There is one respect in which the two situations discussed here
will fail to be the converse of each other. In the "reflecting probe" situation,
the increment in charge density will have its largest value at the probe surface,
whereas if trapped orbits are populated, the maximum increment will occur at a
certain distance fiom the probe. Furthermore, an increase in attracted-particle
density will change the potential everywhere, and situations may be envisioned
in which the change is such as to increase rather than decrease the current
‘collection.

IX. MON-DIMERSIONAL EQUATTONS - SPHERICA’ FROBE

In order to discard unnecessary groups of symbols ani make
easier the task of constructing a computation scheme, we nov rewrite the ex-
pressions developed in Chapter VII in nnndinensional rorm We therefore intro-
duce the folloving dimensionless quantities°

Csemp "ol W,
8 = J2/2m np? KT ;-_v (a/in)? (9.1)
x = Br Tt tlam)?
X - Zegir = B2/ |
me-wn t N,
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The Maxwell velocity distribution (7.12) becomes

T = (1/2n)3/2 B | (9.2)

The rono-energetic distribution (7.13) becomes:

- . ~ 6(6 - ﬁm) ( 3)
- b=y A ———————— 9.
4T N2 By
From {7.14%), we have:
4
Bm = (9.4)
Bquation (7.8) fur the density of either species of charged particle, becomes:
« Y
a2 o 212
e [Cewe) o {B-x-a, 04} (9.5)
Q n
Feissor's equation (4.3) reduces to:
12 y n
ax .. net P
axe T (9.€)
Bquatizn (4.4) becomes:
= 4 = -
Tet, = PPw, =M (9.7)

Equations (8.4) and (8.6) become:

= = % =y - XS
" & Pe =% - 2 . (9.8)

' The a®ove equations, (G.2) to (9.8), together with appropriate
- tests o1 the potential X and its derivatives in order to find the proper values
~ 9f 0,(8), define the iterative scheme necessary to carry out the calculations.

“he current collection (7.10) becomes: |
. e |
1= (2«)3/2jo apt(s)a (p) - (9.9)

) If electron current at plas.ua potential is used as a reference,
the net current equation (7.11) Leccmes:

et = Lnet/To. = Lo - 1*>('3/'7)} | (9.108)

_ A convenient reference current for the ions is that ion current

which would be collected by a probe at plasma potential if the effective tempera-
wure of the jons vere the same as that of the electrons. If we define the ion
cuirent rondimensionalized in this manner as {.., we obtain:
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" The momentum-energy boundaries Qn(B) my take any one of four r0vms. \.@‘-

H “:

i, =1, ()3

[N

is the nondimensional form of the cutoff boundary relation (8.5): -

a(8) =8 - x(x) )/x°

o (B) = p»-’~xp

~, The third and fourth coma spond respectively to Zera
momentum and to the locus of extrema:

2.(B) =@ (Bi

When these expressions are s}stltuted into Eqs. (9.5) .and {, ,9},,_“
or their cylindrical analogues Egs. (11.2) (11.4), the first thre2 ¢, thes-ago« = S
duce integrals in B that may be evaluated az%cally. Expressmn ( Jd4) pre )
duces integrals that must be evaluated numeric¥ly, but may first be transform.d

into integrations over radius. % B ‘ o

These integrations are carried qutx detail in Appendix E,

From the definitions of Mg and x , we ygin the following i""‘m
lation between the potential nondimensionalized in tpl‘% ion energy ad s 0

terms of electron energy: v »
ke = <Ky T , A

' " : -
Fina.lly, from the definitions of Tg and y , cnd meking use of th tsmaj'j;gu, L ;
trality condition (3.1), we obtain the following relation betwee&e ratios of.
probe radius to ion and electron Debye lengths: = . S U - I
M, \2 22N T4 o ki ‘
r) T+ = 2 ' ‘7+= 7+ 7r6 - v (9-16) .1
D_ Ly Neo T ~ - ¥ ~ -
, » » sy
X. CYLINDRICAL PROBE . ~ .
For the cylindrical probe, it is convenient to emplg Yhe usual <
coordinates r, 6, z. The number density of either species of parti™e is then
given by: : Q , i
N(r) =ff(£, v) dv, dv dv, g (10.1) =
-
The appropriate constants of the motion are the ener’\ R and ~

4
angular momentum J of transverse motion in the (r,8 ) plane, and theelocity %
v, of motion parallel to the cylinder axis., E and J are given in tez;ns of vp “’%
and v, by expressions similar to Eq. (7.3). 4

¥ ,
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) It is useful to define a reduced velocity distribution as
Jolio™s: e A o
~-We then proceed as in the spherical case, observing that the same discussion
e out the limits of 1ntegration on vr and vg , and hence on E and J, applies
;W *t‘ again.
‘ Ve‘-‘m a(V ’V,)
; P S
‘“\:« N N(r) j f A(E J) -mjer dEd J e (10.3)
.. e W {\ vz = - R ‘
— e - ) . | |
) S = ; L . ) o
e e e I ~ _ '
L o ve=® pv= 0 Ty o (B)K(I%)A E aT-
N e = e | o - (10.4)
B T = g(E zep(r) } 25 | 2
T T Vet 0 e | g \BoZedlr o’
T R ~ '
s %‘“ ST + J=J_(E)
el -~ =00
Dl - mf d E fv <0(E)ZKH(J ) arc sin { Sar? (E-Ze¢(_f 5 } | o
N = - : , J‘Jnsl(s) ,
I ~ (10.5)
- % -
7o [ Then ® {2 }
. ‘ = = d E E Z arc sin = — (10.6
% n Vr<0 “ omr® (E-Zed(r) ) i )

il E=0

In Eqs. (10.4) to (10.6), the quantities K, Ky, and Qn are as defined in Sec.

- VII. ; |
- The collected current per unit probe —length is
- . - -~ o
v - CH |
¢ I [,a'nr Zef fypco (ToX)| V \d ] | (10.7)
: r=R o
-~ E . ’
“w ‘_’m N
E E=0 | | | |
The velocity distribution that is Maxwellian in tra.nsverse motion is
-E/KT
; m
| NE) = Mo o - (10.9)
" ,
4& The velocity distribution that is mono-energetic ir t:é.nsver,se"mot’ion. is

§ - -
'S
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AE) = 5= B(E - By) (10.10)

As before, we equate collected currents at plasma potential in
order to fix Ey. We first observe that if ¥ is the average velocity of
particle motion transverse to the cylinder axis, rather than the average
velocity of three-dimensional motion, then the number of particles striking
the probe surface per unit area per unit time is Nv/7 rather than Nv/k.

'Equating currents, we obtain:
Ey = hl KT (10.11)
for the cylindrical probe.

XI, NON-DIMENSIONAL EQUATIONS - CYLINDRICAL EROBE

. We define a non-dlmensional velocity distribution in terms of

the reduced distrlbution (10.2):
~ kT

f = - (11.1)

[

Equatlon (lO 6) becomes.
2

f dﬁf(ﬁz ‘arc sur{ o }% . (11.2) -
L % B -x "

P01sson s equation becomes

7 nneﬁ '

& (xZy-- —= (11.3)

The current collectibn equation (10.8) becomés:
Lr® 1 :
p=um? [ He) () )2 (12.4)

The Maxwell distribution (10.9) becomes:

= 2# eP o (11.5)
The mono-energetic distribution (10.10) becomes §
. ol - BM) ¢
f = 5 (11.6)
where:
T
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XII, THE LIMIT OF ZERO-TEMPERATURE REPELLE]D) PARTICLES

A frequently occurring experimental situation is one in which
the ion-to-electron temperature ratio is very small compared to unity. In such
situations, the positive half or electron collection part of the probe character-
istic becomes very difficult to calculate. The ions, which in this case are
the repelled species, have relatively little thermal energy and are turned back
.y a correspondingly small rise in potential. The ion density falls to zero
very rapidly as the sheath is entered, and the sheath edge tends to become
very sharply defined. Calculations of electron current were found to become
very sensitive in these cases. Since these calculations were considered to be
of substantial value, it was decided to consider the limiting case of zero repelled-
species temperature and modify the computation scheme to obtain the correspond-
ing attracted-species current results. These would then form end-point data
for results obtained at progressively decreasing repelled-species temperatures. '
This modified computation scheme is described here.

We first examine certain expressions for number density N(r) as
a function of potential ¢(r), derived in detail in Appendix E. For the repelled
species (Ze$ﬁ>0), these expressions are given by Eq. (E.39) for the spherical
probe and by Eq. (E.92) for the cylinder. Examination of these expressions
shows that for probe potentials much larger than the repelled-species thermal
energy, they both reduce to:
NN = e-Ze¢/kT

" (12.1)
This dependence is of the same form as that prediced in general

by equilibrium thermcdynamics. In the 1limit T - 0, the value of N given by

Eq. (12.1) is zero for Zep positive, and indeterminate for Zep zero. The region

outside the probe is therefore split by a sharply defined sheath edge into two

regions: a plasme in which ¢ vanishes exactly everywhere and the density of

repelled particles is exactly equal to the density of attracted particles; and

a sheath where ¢ rises to its value at the probe and from which repelled particles

are completely excluded. The density of repelled particles falls discontinuously

to zero as the sheath is entered. The electric field is continuous across the

sheath edge since no mechanism exists which can produce an infinite charge

density there or anywhere else outside the probe. Therefore ¢ and d¢/dr both

vanish at the sheath edge; the inward flux of attracted particles at this

radius is entirely due to their random thermal motion. The density of the

attracted species outside the sheath is affected by the depletion of these particles

by the probe, but since electric fields are zero in this region, this density

no longer influences the rest of the problem. The flux of attracted particles

reaching the probe 1s therefore dependent only on the potential distribution in

the sheath, and not on conditions outside it. Computations of potential and

charge density therefore need to be carried out only inside the sheath. The

sheath edge radius is not known in advance, but since no electric fields may

penetrate past the sheath edge into the plasma, its position must adjust it-

self until the total space charge within the sheath exactly cancels the charge

on the probe. This condition is equivalent to the vanishing of d¢/dr at the

sheath edge.

\ These;consideretions serve to define a boundary value problem in

which not only the potential and charge density distributions but also the position
of one boundary, the sheath edge, must be found as part of the solution. This
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problem is sclved here ir order to calculate the collected current in the limit
of zero-temperature repelled particles. Figure 9 shows qualitatively the forms
of potential and charge densities as functions of radius. The subscript 3 is
here defined as referring to the sheath edge radius. :

The modified solution scheme used tc calculate the collected curr-
ents is as follows. The toundary condition for (d¢/dr)P is relaxed. For a
given charge distribution, the toundary conditions ¢— ¢, as r -;R and ¢y,
then serve to define a well-posed two-peint boundary vafun problem for POLSson s
equatior. (The solution is cerived in detail in Appendix D.) An initial trial
value is assumed for the sheath edge radius Rg. An iterative procedure is
carried out, as in the general case, to ohtain the pctential as a function of
radius, and the collected current. The value thus ohtained for the sheath edge
potential gradient (dp/dr)p is used to decide whether the ascumed sheath edge
radius is too large or too small. A second trial value of Rp is computed and
the process is repeated. When a sheath =2dge position is found which produces a
sufficiently small sheath edge votential gradient, the calculatior is stopped.

The method for calculating the density of attracted particles
must be modified in the presence of the zero-potential sheath edge. In order
to examine why this is so, we substitute the sheath edge boundary condition

(RT) 0 into the cutoff boundary expression given by Eq. {8.5) and use
Egs. (9.1) to convert the resulting expression into non-dimensional form. We
then obtain the following expressicn for the sheath edge cutoff boundary in
the (9, B) plane:
B = xp° {(12.2)

This bouncdary appears in Fig. 10 as a straight line having
positive slope and passing through the origirn. No particles coming from
infinity can reach the sheath edge having an angular momentum and energy
corresponding to any point helow this line. Therefore, in order t¢ influence
the current and charge density, the locus of extrema must now not only
enter the first quadrant of the (&, B) plane, but must alsn rise above this
line. Figure 10 shows the result 1qg changes that will ozcur in Figs. 3a and
6c¢. As in Sec, VIII, it ie instructive to identify the-integration paths
Jl(E) and Jo(E) with the corresponding ioci in Pig. 10. In Tigs. 102 and 10b,
J1(E) is represented by the icci ACF and ACHF, respectively; Jo(P) is repre-
serted by the paths ABG and ACEG, Leenevt;vely. Once agein, it should be noted
that these particular conflgufatlons are nnly a small sample ¢f the many that
are pcssible. . -

s -

Using Fig. ida and the notation developed in Appendix E, we
obtain the following expression for the maximum current, of collisionless
attracted particles that may be collected by a probe in the presence of the
zero-potential sheath edge at the location X = xg!

1=y (8a) + 1 (Bg) _‘ (12.3)

wh@ve BS is the value of B correspending to the inﬁersectiontbetween the lines
= Qxp* and B = Xp + Q, which is therefore given by:

= = nem—m K vamas )
Ba (12.4)




. For the spherical prote, we substitute Eqs. (E.34) and (E.35)
into Eq. {(12.3) to obtain:

U$Jr4

i= (1 - (B + 1) &) +(Bg - xp * 1efe (12.5)

X

For the cylindrical probe, we substitute Eqs. (E. 89) and (E.90)
to obtain:

Lo @)} b R )

;)
(12.6)

I+

i=

These expressions give the muximum values of collected current
that can be drawn from a concentric outer boundary for a given boundary radius
and potential difference between the inner and outer boundary, when the cuter
boundary emits collisionless Maxwellian particles inward. An expression equi-
valent to Eq. (12.5 ) has been derived by Medicus (Ref. 30). For large values
of RB/RP expressions (12.5) and (12.€) approach the orbital-motion-limited
current expressions (E.43a) and (E.94a), respectively. For values of RB/RP
only slightly greater than 1, they reduce to the usual expressions for current
increase as a function of sheath edge radius in which it is assumed that all
particles entering the sheath strike the probe. Large values for RB/R may be
expected to occur if the probe dianeter is small compared to the attracted-
species Debye length {Ry << Xp) and the probe potential is large; Rp/Rp will
be close to 1 if Rp >> Ape

The currents given by Egs. (12.5) and (12.6) in terms of sheath
edge location are upper bounds for the current values calculated here by the
soiution scheme described above. These upper bounds are never actually attained

*(for a given sheath edge location) bhecause barriers of effective potential
are always present within the sheath. This is because there will always be a
region just inside the sheath edge in which the potential varies more steeply
with radius than an inverse square law. (This happens in spite of the fact
that the potential gradient approaches zero a% the sheath edge.) This is
equivalent to the statement that the locus of extrema always enters the region
8§>0, 0 x32. The latter may be proven by noting that at x = xp,

4 = dx/dx = O and d2y/dx2 < 0, and substituting this informatioh into Egs.

(9.8) for &g and Bg.

In the limit of large Rp/KD, the sheath lies close to the probe
surface and is well approximated by a planar situation in which all particles
entering the sheath strike the probe, The collected current can then be cal-
culated if the sheath edge radius alone is known, and the sheath edge radius
can be obtained from the solution of the planar Poisson equation. This solu-
tion is derived in Appendix F for the case in which the particles being
attracted into the sheath are Maxwellian. At large probe potentials the form
of the solution curve is asymptotic to the familiar Child-Langmuir sheath
relation. Since this relation does not correctly predict the form of the sheath
potential at small potentials, a finite difference between the sheath edge
radii predicted by the Child-Langmuir and the exact solutions will persist
even at large probe potentials. ‘ )
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If either the spherical or cylindrical mono-energetic distribu-
tions (Eqs. (9.3) and (11.6), respectively) are substituted in place of the
Maxwellien in Appendix F, and the corresponding calculations are repeated,
sheath potentials will result which are different than the one derived there.
These can also be shown to be asymptotic to the Child-Langmuir result, so that
the above remarks apply once again.

These spherical and cylindrical mono-energetic distributions
will produce sheath potential shapes, even in the large-probe limit, that differ
from each other as well as from the Maxwellian result. This is because the
cylindrical distribution of Eq. (11.6) is mono-energetic in transverse motion
only. The spherical distribution of Eq. (9.3) forms a spherical shell in velocity
space; on the other hand the distribution corresponding to Eq. (11.6) forms a
cylindrical shell. No distribution of longitudinal velocity exists which can
make the two equivalent.

XIII, MONO-ENERGETIC ATTRACTED PARTICLES; THE PLASMA APPROXIMATION

It has been indicated earlier (Sec. IV) that other authors have
substituted a mono-energetic model for the velocity distribution of the attracted
species, in place of the more realistic Maxwellian, in order to reduce the pro-
blem from a system of integral equations to an ordinary differential equation
and meke the task of obtaining numerical results substantially easier. Since
one of the goals of thi$aresearch has been to display explicitly the effects
of this approximation by sfomparing the results with those for the Maxwellian case,
a routine for calculation of the density of mono-energetic attracted particles
has been incorporated into the computing program. This subprogram operates
within the iterative scheme designed for the Maxwellian case. One practical
benefit that has resulted has heen the use of this subprogram to provide a very
good first approximation for the Maxwellian case, which is much more expensive
in computation time. This has resulted in a substantial reduction in the total
computation time required to obtain the Maxwellian results.

Furthermore, the Maxwellian and mono-energetic distributions
coalesce in the zero-temperature limit, so that the zero-temperature mono-
energetic results provide an end point for curves of collected current vs
attracted-species temperature for either distribution. -

We therefore include here a brief derivation of the expressions

for the density of mono-energetic attracted particles. Apart from notation,
many of these expressions are substantially the same as those developed in Ref.

5.

For the spherical probe, substitution of Eq. (9.3) into Egs.
(9.5) and (9.9) gives:

n =-}ﬁz Qn{ﬁM-x-nn(BM)xa}g
n
1 ’ '
i = 5 —gl-d & (By)
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where L
Py = 7

For the cylindrical probe, substitution of Eq. (11.6) into Egs.
(11.2) and (11.4) gives:

1
' a (B )x° ) 2
N = -7-17 ZQH arc sin JE%T}
n
1= 2 oy
By = T

In both the spherical and the cylindrical cases, the locus of
extreme normally has the general appearance shown in Figs. 5b and 6, with two
exceptions: first, the upper cusps shown in these diagrams are generally ab-
sent for small probe potentials or large probe radii because the potential in
these cases will remain steeper than an inverse square law near the probe (no
inner family of trapped orbits); second, for the spherical probe the lower
cusp usually vanishes, because in contrast with the cylinder, the potential will
remain steeper than an inverse square as radius increases. In this case the
locus of extrema corresponding to large radii becomes tangent to the & axis as
shown ia Fig. Ta.

As is shown in Fig. 6, as the radius increases, the cutoff line
(shown as DE in Fig. 6b) moves downward and to the right, and its point of
tangency D (Fig.6b) moves downward along the locus of extrema. Two cases may
be distinguished: at smaller radii, D is above the energy level fy. This
energy level would appear as & fixed horizontal line in Fig. 5b and Figs. 6a to
6c but is not included since these diagrams have not been drawn for a specific
distribution function. This line would then intersect the segment CD of the
locus of extrema in Fig. 6b. Corresponding to this situation it is evident
from the definitions of Q;(B) and 0,(B) that we have M(By) = Qo(By) = 8;(Ey).
At larger radii, D goes beiow the energy level By. In this case, & line repre-
senting this energy level would intersect both the segment DH of the locus of
extrema snd the cutoff boundary DE in Fig. 6. ggrresponding to this situation
we have Q;(By) = 0g(By) and Qy(By) = ?aM-x)/ . In both cases, = 0,
Q? =Q = -1and Q, =2. If we define xy as the value of x at which the point
of tangency is at energy Py, we then obtain for the sphere, from Eq. (13.1):

e gt e g e

1 ,v Q
i= ? ‘B-; G(ﬁu)
Similarly, for the cylinder we obtain from Eq. (13.2):

(13.3)
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‘radius the electron Debye length Ay = (€ kT_/q 2K,.)

1 8,(8,)x° 3
) =-1;.arcsin B:(E_x/ﬂu) 3 X 2 Xy
(13.4)
1-%-arcsin ﬂq(au),@ }%;x<xM

i

2 {%lew

The radial coordinate xy may be given a physical interpretation
by noting that for radii smaller than the one corresponding to this value,
8,(By) = 92(By); in other words, all particles that exist at these radii strike
the probe. The quantity xy therefore corresponds to an absorption radius for
the mono-energetic attracted particles; any of these particles that have small
enough angular momentum to allow them to come inside this radius are collected
by the probe (Fig. 4a). If the distribution function.is poly-energetic, a
continuum of such radii exists, one for each energy level in the distribution.
These radii decrease as the corresponding energy increases. For particles
possessing sufficiently high energies, no absorption radius exists; collection
of these particles is orbital-motion-limited. In situations such as that of
Figs. 5 and 6, where the locus of extrema goes through & maximum and an inner
family of trapped orbits exists near the probe, there also exists near the probe
a region containing no absorption radii.

The cutoff boundary p = %(xy) + &xy? corresponding to the
radial coordinate xy is tangent to the locus of extrems &g(B) at the point

®a(Bn), By); therefore, at x = xy, we have:
' By - x(x)
8(By) - '

5“(5«(%% eu_xgm) -0 . (23.5)

£ (o - 25 )

~ The first of thue conditions impiies that the second bracketed

=0

" quantity in Bq. (13.3) vanishes at x = xy, and that the bracketed quantities

in Bq. (13.10) are equal to unity st x = xy.

- In order to derive the Bernstein and Rabinowitsz differential
quations for potential as a function of radius, we identify the attracted
species vith the ions, and we define new non-dimensional radii and ion curreuts.
We assume that the probe potential is negative, or ion attracting, and that it
is much greater in magnitude than the electron energy. * We uze as reference
and as reference current,

the ion current that would be collected by a sphere, or by unit length of
cylinder, having a radius of ons electron Debye length it the ions were Max-
wellian and their effective temperature (Sec.III) vere equal to that of the
electrom.* For the sphere and cylinder, respectively, the non-dimensional
currents 1 referred to these refcurence currents are:
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We rote that Egs. {13.3) and (13.4) contain the expressior x4+/By. This becomes:

[y
#

X.+ x- -x- x

5 = —p = -Z.fﬁ- = - 3; (13.7)
" & (Z+kT.'>

The new quantity B* defined by Eq. (13.7) represents non-dimen-
sioral energy fcr the mono-energetic 3oms, now referred to the temperature of
Maxwellian electrons rather than to the temperature of a corresponding distribu-

» ticr of Maxwellian ions as in earlier Sections. The quantity By, which is the
ratic E,/kT,, is therefore no% contained in the definition of p*. For sinaly
charged ions, as is usually the case, P* is identical to the quantity B used in
Ref. 5.

We also note that X.”Qfor all x.

We define a new radial variable & as follows:

J; .
r - r A ? v
g - ) - R —x \1308}

We substitute Eqs. (13.6) to (13.8) into Eqs. (13.3) and (13.5)
t; chtain for the spherical case:

1 x-13 . 1 =_2 &+ 1%
1 = -5{14 -é-r} +§{l+?.ﬁ W_} H gggv
‘ . (13.9;
, X 2 *
T By
Fér‘. the cylirder, we obtair from Bgs. (13.&)’. and (13.5):
. -, | |
n, = %’arcsin{% m §$€<,g"

1 - ks 3 (13.10)
1‘1‘ »‘l";&!‘c sin{n m-i;‘v;—i-:y n‘>!“ .

=0
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r
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Expressions (13.9) and (13.10) are in a form equivalent to those
derived by Bernstein and Rabinowitz (Ref. 5) for ion density. By comparing
Eqs. (13.9) and (13.10) with their Eqs. (54) and (51), it is possible to obtain
expressions for their nondimensional current 4 in terms of the quantities de-
fined here. For the sphere and cylinder, respectively, these are:

2 *
Vs - 1

T 2 (13.11)
I

The second expression in Eq. (13.11) illustrates the reason why
Bernstein and Rabinowitz were unable to display solution curves for the cylindri-
cal probe for the case p* = 0, which is a nonsingular limit of Eq. (13.10); they
nondimensionalized their ion current using a reference current which is a func-
tion of B . As B* -0, their nondimensional current U becomes infinite for a
given rrobe potential x_ -p and probe redius §p, whereas the actua’ current
collected is finite.

In terms of the radial variable & , Poisson's equation (4.3)
becomes, for the sphere and cylinder, respectively:

A 4 (e 8 ) -
§2 dg (g dg ) ‘]+ ‘L
- (13.12)

From Eqs. (E.39) and (E.92), we obtain for x_._>> 1, the follow-
ing expression for electron density: P

N ek (13.13)

This approximation together with Eqs. (13.9) to (13.12) con-

- stitutes the Bernsiein and Rabinowitz differential equations for potential vs
radius, for the sphere »nd cylinder. This expression for the electron density

~ would also be correct for small repelling probe potentials in the hypothetical
case of a prove which reflected all electrons which struck it, because the
electrons would then not be depleted by the probe and would be in thermodynamic
equilibrium; Bq. (13.13) coincides with the well-knowa distribution correspond-
’ing to this condition. ' ‘

- If the limit of zero ion temperature, g% 0, is taken in Eq.
(13. 9), the result diverges for §>'§u, for § < y, we obtain:

This result implies that {y —» ® asb -0: this cunalaobe
proven by letting "~ O in Eq. (13.9b); ue obtain the result X_(8y) -0; this
in turn implies §y —w . A3 Bernstein and Rabinowit: have pointed out.!q.
(13.14), apart fro- notation, is identical to the form which Allen, Boyd, and




Reynolds (Ref. 6) derived by assuming that the ions had no thermal motion and
fell radially inward from infinity under the influence of the electric field.

The form of Eg. (13.14) indicates that the solution scheme
developed here for the general case will break down for the spherical probe
in the limit of zero ion temperature. This may be seen by noting that as
¢ »o , we require 74 — 1; we observe that Eq. (13.14) specifies the collect-
ed current 1" in terms of the limiting behaviour of the potential x_ at in-
finite radius. Since the present calculation scheme replaces the infinite
plasma by a finlte outer boundary, it is clear that the scheme will fail to work
in the 1limit B - 0. In fact, it may be expected that the calculation scheme
for finite ion temperature will become progressively more ill-behaved as ion
terperature decreases because the form of the potential at large radii will
become relatively more important. This expectation has been borne out in com-
putations for the spherical probe in both the Maxwellian and the mono-energetic
cases (Sec. XV; Appencdix H).

---fhe Bernstein and Rabinowitz and Allen, Boyd and Reynolds cal-
culations do not have this difficulty because they extend to infinite radius.
Neither of these, however, is able to deal with a Maxwellian plasma or a small
probe potential. Therefore, no method exists at present to adequately treat
these cases when the ion temperature is small. However, for large probe po-
tential~. the Allen, Boyd and Reynolds equation is the zero-ion-temperature
limit for the Maxwellian as well as for the mono-energetic case. Solutions or
this eguation may therefore be expected to provide an end point for curves of
ion current vs ion temperature, and thereby enable graphical determination of
ion current in the complete range of temperatures extending to zero.

Accordingly, a numerical solution of the Allen, Boyd and Rey-
nolds equation has been carried out here (Appendices G and I) in order to pro-
vide these limiting values. This is in spite of the fact that thnis tusk has
already been carried out by three other authors (Refs. 5, 6 and 8); none of
these has carried out calculations in the complete range required here, and
none of them has published his computer program.

A qualitatively different situation is obtained for the cylinari-
cal probe if the limit B*— 0 is taken in Eq. (13.10); we note that gy does
not become infinite, and that the expression for 1, does not approach the
expression that may be derived by assuming that the ions move radially inwar¢
~ (Ref. 8). This an has been a source of concern to several previous .
authors (Rets. 6 and 8); some light may be shed on it by studying the behaviour
or th: electric potential at large radii.

For the sphere, we assume § > {“, ;-ow and x_ -0, and approxi-
mate the set of Bernstein and Rabinowitz differential equations (13.9), (13.12)
and (13.13) to obtain:

@x , 2 ax (1 1 )_(21 .1’)-2 Lo

It x.a N, the left stde of Eq. (13.15) @ ~(M2) 4ng
vanishes to order N; neither brackgted term on the right side vunishes. there-
fore, N = 2, and we obtein, to second order in ¢ :

3
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®
_ Apert from notation, this result is the same as that obf'ined )
by Bernstein and Rabinowitz using the plasma approximation.

T

If B -0, the coefficient of &2 in Eq. (13.16) va.nisg
and the leading term in the potential for large radii may be found from

’ (13.14) by noting that as & -, 7, - 1; this gives:
q X2 ) !
-k
X. =g ¢ t(13.17)

*&
‘For the cylinder, we combine Egs. (13.10), (13.12) and (Ii.l3)
and approximate as before to obtain:
* ‘9‘

= = X - -.18)
d§2 ¢ at - N ‘,5* + X_ §

For finite 6 , X. vanishes in comparison with B* in the llﬁ
of large radii; once again, if y_ «a §‘N the left side vanishes to order N;

we obtain, to first order in € : ir
L *
1 i -1
;‘\ x_ = g ( “ ‘L9)
;:‘ 2 NﬁT "/é* %

To obtain the leading term in the case B = 0, we proceed to
this limit in Eq. (13 18) before letting %_ —» 0; we then obtam'

(;;_r )% §-§ ‘, (13@)

Examination of these asymptotic potentials shows that in the =
case of the sphere, the potential becomes a steeper function of radius in the%
limit of zero ion temperature, whereas for the cylinder, it becomes shallower.
Furthermore, for sufficiently smell ion temperatures and large radii, the de- \

e 'Vw

X =

pendence of potential on radius will always be steeper than an inverse square
lew for the sphere, and shallower for the cylinder.

In order to illustrate the significance of this difference, we ,
consider an ion of zero total energy and zero angular momentum, which suffers %
8 smell deflzction while f&lling radially inward toward the probe under the in-
fluence of the electric field., We assume that this ion is deflected in angle
but that its speed is unchanged; i.e., its total energy remains zero but it
acquires a finite angular momentum. It is possible to show (Fig. 4) that if it
is moving in a potential steeper than an inverse square, it will always cont inue
to fall inward ‘o the probe, but if the potential is shallower than an inverse
square, and the ion has acquired sufficient angular momentum, there exists a
turning point in its orbit., It will miss the probe and move back out into
the plasma; it will fail to be collected.
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In any physical situation all of the ions are scattered to some
extent by the presence of other particles (Appendi» A) and will in general
acquire a non-zero distribution of anguiar momenta. If this distributiun
corresponds to one isotropic at infinite radius, and if the total energy of
each ion remeins unchanged, the results computed here for the cylinder, which
are based on the zero-ion-temperature limit of Eq. (13.10), will correctly pre-
dict the current. Chen (Ref. 8) has carried out zero-ion-temperature cylindri-
cal-probe calculations based on the assumption that the ions have zero angular
momentum and move radially inward. His results may be expected to over-
estimate the current collection.

Since the cold-ion limit gives a result that disagrees with
the zego-ion-temperature assumption of radially inward motion, the ion tempera-
ture B~ plays the role of a singular perturbation, similar to that of the in-
verse Reynolds number in continuum fiuid mechanics. It is this fact that Chen
has not taken into account.

Of some interest in studying the behaviour of the potential is
the "placma approximation" or "guasi-neutral solution", This solution is ob-

< tained by observing that outside the sheath the ion and electron charge den-

. sities approach each othet very rapidly, so that the difference between the two

& rapidly becames much smaller than the magnitude of either. Therefore, the
potential obtained by maeking the approximation of equal charge densities,

“* n4 = %_, is a close approximation to the actual potential.

Using this approximation, together with Egs.(13.9), (i3.10) and
(13.13), and solving for the radius £ , we obtain, for the sphere and cylinder,

respectively:

e i* X % ' -2x-

: —f\/—_———z— =e 8" + x. - Jé'-l—‘ e

5 NT €

: _ (13.21)
Nr o i¥ * i X
5 T (8" + X.)2 sin (me ")

We observe that in both cases, the radius & becomes large as
ti™-potential x_ becomes small, as expected, but that & also becomes large
 for Tgrge x_. This means that for a certain value of y_,¢ goes through a
minim.me, and the potential slope dx-/dg becomes infinite. This suggests
that the corresponding radius € is a lower limit for radii at which the plasma
approximation will hold.

‘ It is of interest to compare the value of x. at which dy./dt
becomes infimite, with a prediction derived by Bohm (Ref. 12) that at the sheath
~edge ). > _# for a stable sheath.

xg} differentiating £-2 and ¢l with respect to X. in Egs.

(. '\) and “(49.31b) respectively, and equating the result to zero, we obtain
tﬁ‘u_p“mudn‘ ex vsions for the sheath edge potential Xgp:
B ""M kw.

~
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1 XsE ,
3- (" +xgg) +2e JB* (B* + xsg) =0

(13.22)

XSE. XSE
tan (7e )- 2me (8" + xgg) =0

Solving Eqs. (13.22) numerically for the value of XS associated
with a given B* shows that Bohm's criterion is fulfilled in all cases. For the
sphere, Xgg = 1/2 when B* = 0; as B¥ increases Xgg first increases, then maxi-
mizes for P* somewhat less than unity, then decreases toward fn 2 = 0.693...
as B* becames large. For the ‘ylinder, Xgp is slightly less than unity for B*=O,
and decreases to fn 2 as B¥ becomes large. Therefore, another qualitative
difference between the sphere and the cylinder is seen to exist; for moderately
small B*, the rate of change of sheath edge potential with g* is positive for
the sphere and negative for the cylinder.

Expresgions for the absorption boundary potential and radius may

be obtained by substituting the expressions for &y in Egs. (13.9) and (13.10)
into Eq. (13.21). For the sphere, this procedure gives:

-2XM

X
ke =1+ E;:
(13.23)
£, eZXM ﬁ
M T 2w 45*
For the cylinder:
MY I ,gn 2
) e (13.24)
™M = T P rIn2

Expressions (13.23) and (13.24) show once again that for the
sphere, the absorption boundary moves out to infinity as the ion temperature
becomes small, whereas for the cylinder, it remains finite, By allowing B*
to become large in Eg. (13.23a) we obtain XM = 4n 2; for the cylinder,

XM = 4n 2 for any B”. Therefore, in both cases, as B* becomes large,
Xy = Xggs if the attracted species is much hotter than the repelled species,
the absorption boundary and sheath edge radius tend to coincide.

Many of the results obtained here may be expected to agree
qualitatively with the Maxwellian case, for which it is impossible to use
these methods to obtain similar expressions.
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XIV, ORBITAL-MOTION-LIMITED COLLECTED CURRENT EXPRESSIONS

The orbital-motion-limited current (Sec. VIII) is that collected
by a probe when none of the particles which come from infinity and are capable
_ of penetrating inward to the probe are excluded from it by intermediate barriers
of effective potential. In other words, all particles which lie above the probe
cutoff boundary of Eq. (8.3) in the (J2,E) plane actually reach the probe. For
the attracted species, it is the collected current in the limit Rp/Ap -0, and,
in certain cases, it is the collected current within a finite neighbourhood of
this 1imit (Appendix E; Sections XV and XVI). We summarize here the expressions
for orbitalsmotion-limited current derived in other sections. From Egs. (E.43)
and (E.94), we have for Maxwellian particles:

For the spherical probe:

i=1- Xp 5 Xp S 0]
1h.1
% (14.1)
i=e 5 XP >0
and for the cylindrical probe:
. _ 2 . Nox .
1= Xy +g( 'X-p)>, XpsO
)“'nn
-xp (l 1)
i=e 5 Xp20

From Egs. (13.1) and (13.2), setting Q;(By) = By - Xp, we ob-
tain for mono-energetic particles, for the sphere and cylinder, respectively:

&

i=1-f% 35 X<
(1%.3)

i T
is= 1l- ;_xp H Xp < N

It is often useful to non-dimensionalize the ion cwrrent by
dividing by 1ts value when the ions are at electron temperature and the probe
is at plasma potential. We substitute expressions (9.10b) and (9.15) into Egs.
(14.1) to (14.3) to obtain the following ion current expressions. For Max-
wellian ions collected by a spherical probe, we have:

X
i+_= W+-—P—"— 5 Xp_ZO
Vﬁi? (1k.4)
Xp./Tg
i+ = ymg e 5 Xp. S0
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For Maxwellian ions collected by a cylindrical probe:

i, =312?-<JE+ ﬁfgs( xp_/”G))

Xp./Tg

For mono-energetic ions, we obtain from Eq. (14.3) the following
expressions for the sphere and cylinder, respectively:

>0

we

Xp
(1k.5)
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e

v
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1=

X
T :
W*Eﬁ > Xp.

i+_—{-12.;-.\ﬁ(p’_'+{{7r6; Xp. 2 -1 Tg

(14.6)
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Examination of Eqs. (14.4) to (1L4.6) shows that in general, the
mono-energetic expression approximates  the Maxwellian much more closely for
the cylindrical case. For the sphere, the two do not approach each other at
large probe potentials as they do for the cylinder. It is also noteworthy
that as the ion temperature becomes zero, the orbital-motion-limited current
becomes infinite for the sphere, but remains finite for the cylinder.

Computations of current for a cylindrical probe in the general
case show that in certain ranges of Rp/%p , the differences between the Maxwellian
and the mono-energetic results are considerably greater than in the orbital-
motion-limited case (Sec. XV).

We also note once again that the roles of ions and electrons in
expressions . (14.4) to (14.6) are completely interchangeable.

B

XV, RESULTS AND DISCUSSION - SPHERICAL PROBE'

Before beginning discussion of the relevant features of the cal-
culated results, & brief description is given of where can be found the various
items of background material in this report. The Fortran II programs that have
been developed and used to obtain the numerical results presented here are
listed in Appendix I. Table 3 identifies the most important Fortran variables
and formulas in these progrems with their text equivalents. Representative
samples of printed output obtained from the University of Toronto IBM TO94
digital computer using these programs are shown in Appendix J. Computed current
“collection results are presented in Table 5 for the spherical probe and in Table
6 for the cylindrical probe. Appendix H contains a discussion of the accuracy of
these results. Current collection results, potential and charge density distri-
butions, and trapped-orbit and orbital-motion-limited-current boundaries are
shown in Figs. 13 to 31 for the spherical probe and in Figs. 32 to 51 for the
cylindrica%'probe.

' It is common usage to employ the electrons as the reference
species in any discussion of Langmuir probes; this convention is followed in
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presenting these results. The electrons are also the hotter species in the
majority of situations of laboratory interest; accordingly, results are pre-
sented here for the range 0 < T,/T. < 1.

: For brevity of presentation, we also assume in presenting all
‘results that Z, = 1 and Z_. = -1. As pointed out in Sec. III, this assumption
involves no real loss of generality since the results may be applied to the case
of multiply charged ions by scaling the temperature ratio T+/T_. Since the
nondimensional probe potential Xp_ referred to electrons always has the
opposite sign to the probe potential ¢p, it is also common practice to use as
a nondimensional probe potential the quantity -Xp_; since Z_ = -1, we have

-Xp_ = e¢p/kT .

It has already been pointed out (Sec. III) that the roles of
ions anrd electrons are interchangeable for purposes of this discussionj also
that these results may be applied to the case of multiply charged particles
by scaling the quantity T+/T-. It is also note-worthy that if the need arises
o use the colder species as reference, these results may be expressed in terms
of nondimensional probe potential relative to the colder species, and the ratio
of probe radius to colder-species Debye length, by using Egs. (9.15) and (9.16)
to scale the quantities Xp and 7.

Furthermore, the nondimensional probe potential referred to the
colder species is always larger than that referred to the hotter species so
that these results, which are computed for values of XP, referred to the hotter
species, from -25 to 25, will always cover a range larger than this when referr-
ed to the colder species. By identifying the colder species with,the electrons,
it is possible by the above reasoning to apply the results presen ed here to
cases in which T,/T_ is greater than unity.

, The results of these calculations therefore apply[to a considerably
larger range of situations than those evident at first glance.

The preceding remarks in this Section apply not dnly to the re-
sults for the spherical probe but also those for the cylindrical] probe presented
in Sec. XVI. The remainder of this section is devoted to a disgussion of the
computed results for the spherical probe which appear in Figs. 13 to 31. The
current, collection results plotted in Figs. 20 to 29 are also pfresented in
Table 5.

Figure 13 shows potentisl vs distance from probe |surface in
electron (or ion) Debye lengths for a probe at a fixed potentiall edp/kI. = T 2s,
for equal lon and electron temperatures and a range of ratios of probe radius
to either Debye length from 1 to 100. Figure 1i shows corresponding ior and
electron charge densities. In both cases the influence of the probe may be
seen extending a greater number of Debye lengths into the plasma as Rp/ is
increased. The local rise in attracted-species charge density ngar the
probe for the smaller values of Ry/ shown 1s due to two causes. \ First,the
potential in this region is of & gorm which allows particles having tertain
values of angular momentum and energy to orbit the probe many times before
falling into it or moving back out to infinity; the presence of these particles
in this region therefore produces a rise in charge density because of their
long dwell time., The second reason is that because of the spherical geometry,
the particles moving toward the probe are concentrated into a smaller volume
as they approach it; their density must rise accordingly. \

L




»

-

A situation in which the ions and electrons are at different tem-
peratures is shown in Fig. 15. In this diagram potential is plotted against
radius for various values of probe potential for the values T+/T_ = 0,1 and
RP/AD_ = 10. The marked asymmetry tetween the cases of positive and negative
probe potentials is due to the fact that in these two ranges the colder and
hotter species, respectively, are repelled. As discussed in Sec. XIII, the
amount of electric field that penetrates past the sheath edge into the plasma
_ is nearly proportional to the thermal energy of the repelled species; therefore,
¢ shielding by the ions at positive probe potentials is nearly complete, whereas
L electron shielding at negative probe potentials allows a much larger amount of
electric field to penetrate into the plasma.

A related set of charge distributions is plotted in Fig. 16,
which shows ion and electron densities for a probe at positive potentials for
the same range of cases as those shown for a positive probe in Fig. 15. The
progressive increase in charge separation associated with sheath formation and
growth is evident here. If the results corresponding to e /KT_ = =25 and
Rp/Mp_ = 10 are compared in Figs. 14 and 16, the difference between them is that
in Fig. 16, the repelled species, i.e. the ions, is no longer at the same tem-
perature as the attracted species but only at a tenth of it., Comparison of these
results shows the sharpening of the sheath edge as the repelled-species tempera-
ture is reduced with attracted-species parameters held constant. The dotted
curve in Fig. 16 showing the corresponding result for T+/T- = 0 shows this trend
carried to completion.

Figures 17 and 18 show potential and charge densities, respectively,
plotted as functions of radius for the case of zero attracted-particle temperature
and large probe potential, obtained by numerical solution of the Allen, Boyd, and

.Reynolds equation (Ref. 6) as treated in Sec. XIII and Appendix G, and carried out
by Program 4 (Appendix I). Figure 17 also shows as a dotted curve the trapped-
orbit boundary. If some particular situation involving zero attracted-species

' (ion, in this case) temperature has values of probe potential and Rp/Ap_ corre-
sponding to values of potential and r/AD_ in Fig. 17 which lie above this bourd-
ary, then the form of the potential adjacent to the probe will be such that
trapped crbits of the type discussed in Section VIII exist. The results plotted
above this boundary are therefore subject to the gqualifications noted in that
Section, namely, that the population of such orbits must be negligible. In Fig.
17 and in all later diagrems in which trapped-orbit boundaries appear, it is to
be understood that they refer only to a fully Maxwelllan plasma, and not to one
with a mono-energetic distribution for the attracted species; zero-temperature
attracted particles are included in this definition as a limiting case of the
Maxwellian distribution.

Lhe increasing concentration of the attracted particles as they
‘move radially inward toward the probe is again visible in Fig. 17, as in Fig.
14; in this case the particles do not orbit the probe and the increase in their
density is due only to the decrease in the volume that they occupy as they
approach the probe.

If the probe potential is now changed in sign so that the particles
which are at zero temperature are now the repelled ones, then the situation is as
described in Sec. XII. In particular, the sheath edge radius in this case is
now & sharply defined location at which the repelled-species density falls dis-
continuously from its value outside the sheath to zero within it. Computed
values of this sheath edge radius are plotted in Fig. 19 as & function of probe
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potential and ratio of electron, i.e. attracted species, Debye length to prote -
radius. The resulis for non-zero values of Ay /R, have been computed using
Program 2 (Sec. XII; Appendix I); the curve for Ny /R, = O has been computed
using Program 3, which calculates the probe characteristic in the planar-
sheath limit (Appendices F,I). The smooth transition in the result from the
non-zero case to the limit may be regarded as a check on the correctness of :
both programs; on the other hand, the steep variation of sheath edge radius with ?
AD_/Rp near tais limit at larger probe potentials is an indication that the '
more complete description deviates rapidly from the planar-sheath approximation
as AD_/RP increases. The trappsd-orbit boundary is also shown in this diagram.
The trappecd-orbit boundaries shown in Fig. 19 and subsequent
diagrars have been obtained from the computed results by the following method.
Corresponding to each set of values of the three parameters T+/T_, ep /KT_,
ana RP/AD_ is a maximum radius at which the shape of the potential allows
trapred orbits to exist. Table 3 identifies this quantity in the output of the
computer programs. The ratio T4/T_ and either one of the two quantities
e¢p/kT_ or RP/AD_ are held constant and this maximum radius is obtained as a
computed result for several values of" the other. It is then extrapolated back
to zerc distance from the prcobe as a function of this quantity.

Figure 20 shows attracted-species (ion or electron) current
collection as a function of prove potential for the case T+/T- = 1 for various
values of RP/KD_. The result for Ry/Ap_ = O, the orbital-mction-limited
current, is obtained from Kg. (lh.l?; the remaining curves are computed re-
sults appearing in Table 5c.

Figure 20 also shows the trapped-orbit boundary for T+/T. = 1;
as in Figs. 17 and 19, this boundary corresponds to the smallest probe potential
for a given value of R /AD_, or eguivalently the largest value of R /AD_ for
a given probe potential, for which the form of the potential adjaceng to the
prchbe is shallow enough so that trapped orbits exist. The question of whether
trese trapped orbits, when they exist, will be populated, has been discussed
21 Sec. VIII. In that section it is pointed out that if these orbits are
populated, the probable effect will be a decrease in current collection below
the values shown in Fig. 20. All results in this diasgram corresponding to
points above this boundary are therefore subject to this qualification.

Ion current results for the case T4+/T. = O are skrwn in Fig.
21, plotted as functions of probe potential for various values of R /AD_.
These results correspond to the potentials and charge densities of gigs. 17
and 18 and are therefore based on the simplified electron density model of
Eq. (13.13). Accordingly, for values of -e¢p/kT_ smaller than about 5, they can
be expected to deviate significantly from current collection values correspond-
ing to the more realistic model of an @bsorbing probe (i.e. one that collects
every charged particle that strikes it), and should therefore be used with
caution. In contrast with the case of finite ion temperature (Fig. 20) the ion
current. at zero ion temperature increases without limit as Rp/)p_ is decreased,
for any fixed probe potential. Figure 21 also shows the trapped-orbit boundary
corresponding to T4/T. = O, The current collection results shown in this dia-
gram appear in Table 5a.

[

Figure 22 shows electron current as a function of probe potential
Tor various values of RP/AD_, for the case T./T_ = 0, i.e. for the case of zero-
t.emperature repe.led particles. Th: results for non-zero values of RP/AD. , -
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have been computed using Program 2 (Appendix I); the result for R N_ =0 is
the same as that for Fig. 20. Once again, the trapped-orbit boun ary is shown.

Comparison of Fig. 22 with Fig. 20 shows that the electron
current decreases more rapidly as Rp/hp_ increases when the ions are at zero
temperature than when they are at electron temperature. This effect is brought
out more clearly in Fig. 26; the reasons for it are discussed in connection
with that diagram. The current collection results in Fig. 22 correspond to
the same cases as the sheath edge radii shown in Fig. 19.

Ion collection as a function of Ap _/R, is shown in Fig. 23 for
ep,/KI_ = -25 and values of T,/T_ of O, 0.5 and l. Fhis diagram has been
plotted in this manner in order to best illustrate the behaviour of the
collected current as AD /Rp becomes small. This diagram shows that for smaller
values of Ap_ /Ry, the ion collection is not a monotonic function of ion tempera-
ture; this behavfour is brought out more clearly in Figs. 27a and 28. This
diagram also shows the corresponding results for mono-energetic ions. The
curve shown for the case T4+/T. = O is a member of both the Maxwellian and mono-
energetic families of curves in this diagram since, as pointed out in Sec.

XII1I, the mono-energetic and Maxwellian distributionsare the same in this
limit. -

The kink in the mono-energetic curve for T+/T_ = 1 is caused by
the fact thet current collection for mono-energetic ions becomes orbital-motion-
limited at this point. It may also be noted that no such feature appears in
the corresponding Maxwellian result. The reasons for this behaviour have been
discussediiE Sec. VIII; this section. also defines what is meant by orbital-
motion-li ted current when the attracted species is Maxwellian. The results
for‘'ion and electron collection are of course the same for the case T+/T. = 1.

None of these curves extend to RD_/R O since the computation

scheme has been defined only for finite values of Rgé An exception to this
occurs in Figs. 25 and 45 for the case where the rebel ed particles are at zero
temperature., .

The trapped-orbit boundary for the Maxwellian case is also shown
in Fig. 23. As mentioned in connection with Fig.l7, all trapped-orbit boundaries
shown in this and other diagrams refer to a fuliy Maxwellian plasma only.

In order to display more clearly the hehavior of the ion current
at small values of Rp/k , the same results as those of Fig. 23 are shown again
in Fig. 24, plotted as functions of Rp/Ap_ instead of Ap_/Rp. Here the re-
sults shown for non-zero.values of T./T. indicate that in the Maxwellian case,
the current collection for non-zero values of Rp/Ap_ approaches the result
for R /AD_ 0 only as & limit. In contrast, the mono-energetic results show
a finfte range of values'of Rp/Ap_ in which the current has a constant value.
In Sec. XVI, it will be seen that the corresponding Maxwellian results for the
cylindrical probe, unlike those for the sphere, also show such a region of con-
stant current level. Appendix E contains a discussion of the reasons for this
difference in behavior. Since it was impractical to use the computation scheme
arbitrarily close to zero R AD- (the smallest value of RD/AD_ for which com-
putations were done was 0.2) the question of whether the current collection be-
comes orbital-motion-limited, i.e. reaches this maximum value, for any non-zero
values of R /AD cannot be definitely settled without an asymptotic analysis
of the problem For small Rp/Ap_; such an analysis is beyond the scope of this




researcr, Morzover, thic question is of academic interest only since the
result for zero Rp/lp, is known 'and the residual uncertainty for very small
()

Rp/AD.. is extremely smalil.

Figure 25 shows electron current as a function of }p /Ry for
ep/KT. = 25 ard values of T,/T_ of 0, 0.9, and 1. Once again, the trapped-
orbit boundary is shown. The cerrasponding monc-energetic current results are
also shown. The planar-shestl. aporoximation to the result fer large RP/AD_
and T,/T. = O {Appendices F, J) is alsc shown; in spite of the fact that the
Maxwellian and mono-energeniz curves ilor T+/T” = 0 are indistinguishable in this
diagram for small values ot %D-/RP, it shoulc be noted that only the Max-
wellian curve has the planar-sheath eppioximaticn as an asymptote. The curves
for T+/T.. = O include the end point at Mp /Hp = (0 since the iimiting resuls
i =1 is krown (Sec. XII). -

The electron current resulis of Fig. 25 are shown agein in Fig.
26, plotted as functicns of Rp/Ap_ instead of dp /Rp. As noted earlier in
ronmection with Fig. 20, the eleciron current decreases more rapidly as Ro/ M
increases when the ions are al a lower temperature. This occurs because the ~
iors are in this case the renp:zlied species; ror lower values of their tempers-
ture a smaller amouah of ithe fisld of the probe is able to penetrate past the
sheath edge into the plasmz (S:c. XIIT) und attrect electrons to the prevs. As
noted eariier in connection with Figs. il and 16, if the temperature ol the
renelled speciec is lowerea while the attracted-species parameters are held con-
stent, the sheath edge ternds Lo sharpen sinc? the repelled particles are now
tirrned bacx by a smaller rise in potentisl. As & result, the potential well
surrounding the probe steepens and contrachs; fewer particles enter this welil;
current collection decreacas.

Ouce again, es mentionad in coanection with Fig. 24, the precis:
dependence of current on'Rp/)D- for values near zero cannot be determined with-
out &n asymptotic apslysis ifor cases near this limit. In particular, when
T,/T. = 0, the behaviow: of the sheath edge radius as R ’AD. -0 s a very ine
volved questicn. As before, the wnswers Lo these questions are of very minor
imporiance in determining currert collection since the limiting result is
known, ' ‘

figure 274 shows ion and electron currants as functions of
T+/T. for various atirscting probe potentiuls and Rp/Ap_ = 10, Mono-energetic
results with firnite collesction of the repelled particles, and the simplitlied
case based on the assumption of 2cro collection of these particles, are both
shown; the lutter corresponds to the use of the simplified relation (13.13) for
electron density. Currerst zollection values for egp/kI. = -10 obtained from
the tabultted vesults of Berssicin and Rabinowitz (Ref. 21) are shown circled
for compsrison. They &r< seen to join smaothly on to the mono-energetic results
comuuted here for larger Values of ion temperature. The most striking feature
of these results is that as loa to slectron temperature ratio T,/T_ is de-
creased, the ion c¢oullection pasises through a minimum, then increases very
rapidly as T+/T_ approiches za2ra,  The reuson for this behaviour is thuit as
ion temperature decreases, the dominant inrluence is at first the decresse of
ion thermal motion and tnevedore ion randon flux: as ion temperature decreuses
further, the ubsorptioun radii discusced in Sections VIIL and XIII move autward
to iafinity, slowly at first, then very rapldly, so thet the increase 1 ion
collection volume becomnes thue dominant iafluznce. The reason why this behaviour
osceurs hLas ulso dean discussed in $.2, XIXI. On the other hand the electron




collection for positive probe potentials is seen to be & smoothly increasing
function of T+/T « Since the points corresponding to T+/T = 0 are calculated
using a different solution scheme (Program 2; Appendix I) than those correspond-
ing to non-zero values of T,/T., these results also furnish a check on the
correctness of both programs.

Figure 27b shows ion or electron collection as a function of
probe potential for T,/T_ = 1 and Rp/AD- = 100. This diagram has been plotted
for the cases of Maxwellian attracted particles and mono-energetic attracted
particles with and without collection by the probe of repelled particles. In
the latter case the distribution of repelled particles again corresponds to
the simplified model of Eg. (13.13). The difference between these results for
mono-energetic attracted particles is typical of all corresponding results
obtained for both the spherical and cylindrical probes, though it is smaller at
lower values of Rp/Ap_. The reason why the current in the case of non-collection
is increased relative to its values in the case of collection has been discussed
in Sec. VIII. 1It,is due to the fact that the assumption of zero collection re-
sults in an increase in the density of the repelled particles adjacent to the
probe and decreases the steepness of the potential near the probe, allowing
more of the attracted particles to reach it.

In order to illustrate more clearly the behaviour of the ion
current, this quantity is plotted again in Fig. 28, as a function of both
T+/T and probe potential for RP/AD = 10. As explained in connection with
Fig. 21, the zero-temperature result is of the required accuracy for the com-
pletely absorptive probe assumed in this research only in the range e¢p/kT < =5
Accordingly, this curve is not drawn for probe potentials closer to zero. The
non-monotonic nature of the dependence on ion temperature is again visible, as
in Fig. 27a. The curve for T,/T. = O.1 extends only to e¢p/kT; = <10 since the
computation scheme proved unable to carry out these calculations at larger probe
potentials (Sec. XIII; Appendix H) Accordingly, the regions between T,/T_ = O
and 0.25 of the curves corresponding to values of -e¢p/kr- of 15,20, and &5,
have been plotted on the basis of the expected behaviour of these curves,
using as guides the curves shown for smaller values of -e¢p/kI-, as well as
the mono-energetic curve shown for -e¢p/kT_ = 25. Results for mono-energetic
ions are shown for T,/T. = 1 and for e¢p/kT_ = =29, The trapped-orbit boundary
is also shown, :

Figure 29 shows electron current &as a function of probe potential
for Rp/Ap_ = 10 and values of T,/T_ from O to 1. The manner in which the curves
for decreasing values of T,/T_ depart at progressively lower probe potentials
from the result for T:/T. = 1 is because of the progressively smaller probe
potentials at which the electron sheath begins to form as T,/T. decreases.

Again; the trapped-orbit boundary is shown; as indicated earlier, the location of
this boundary corresponds to the smallest probe potential for which trapped
orbits exist, for given values of T./T. and Rp/Ap_.

"he trapped-orbit boundary locations plotted in the preceding
diagrams huve been summarized in Figs. 30 and 31 for negative and positive probe
~ potentials, respectively, for values of T,/T_ from O to 1. Tke boundary for
T+/T. = 0 in Fig. 30 is shown as a dotted line in the range O < -e¢ /kT. <5
since this curve is based cn solutions of the Allen, Boyd, and Reynolds equation
(Appendices G, I) corresponding to the equilibrium distribution (13.13) for
electrons. Also, in Fig. 30, it is evident that the trapped-orbit boundary
location, like tiic ion current, is not a monotonic function of T+/T.. The fact
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thut come of tbe beunderies zhown in Fige. 30 and 31, as well as those £
ylznoer in Figl J o a0t extended t¢ zero probe potential is
were curried ouf, in these ranges off parameters

1 the quantity of prirmary importance, *the

or the
Lecauze
*0

This comupletes bhe discuzsion of the results compuzed for the

A¥l,  £uGULTE AND DILCUSEION - CULINDRICAL PROBI

This geztlon is awvoied computed resuliis
; p:ﬂbe winich zre she The general re-
LI ot Sec. XV sertation of thecse
et Gion vosults 2o 19 are =2lso pre-

:ntinl ang charge density distributions showrn in Figs.

e w0 55 correspond, respectively, to those of Figs. 13 to 16 for the sphere.
In comparionon with the sphericul probe, all ¢l these diagrams show the larger
extant of the disturbhar i be

th potertiel zund charge density created by the
presanes: 21 the “Vlindrlual arose. Filgure 33 in comparison with Filg. 14 zhows
aosraller concenurstion of the attracted varticles nexr the probe at low values
v h-cause the wolum: ogeupied by the inward-moving pariticles
ir She c¢ylindvical geomastry as they move toward the prohe.

..A. |

Pigure 5% szhows potentizl vs raaius for R /%ﬁ = 10. for valiues
ot o G and 1, and for valves of e¢ﬁ/k¢ of -1, =3, -10 and -25. It has
reen shown an Sec. ATI5 that for mona-on ﬁzgeté_ ions the f'orm of the potential
at Zarge radius Yecomes more shallow in the limit as T+/T_ ~» 0., These resuits
for =z fully Maxwellian plasmz show the same effect. Corresponding charge den-
sities are pletted as functions of Tdiluv in Fig. 37, for the same values of
Rp/Mp. and ©./7_, and for values of epp/i¥  of -0.1, -3, ané -25. The charge
densities are 2.is0 ohserved Lo have a no'e gradual dependence on radius when

Sheath °d59 thickness i3 shown in Fig. 38 as a function of hoth

probe pohential and Ap_/ ,“D for T./T_ = O and positive vaiuves of probe potential.
i.,2, 7or the zase af zerc-tamperaiure repelled particles, correspording to Fig.
19 for the gphere. Comparisca cof thase tvo diagrams shows that the sheaith edge
always lies tfarther from the =mrobe in the cylindrical case for the same valiues

of prove poLzntial and  Ap. /uv. One vreason for this is that, as shown in Sec.
YI1I. if the repelled plrth*EQ are at zero temperature, none of the electric
fi=ld duve 12 the nrobde's presencs can penacrate past the sheath edge into the
plasma. This means that the total et ﬁp ¢z charge in the sheath must exactly
cancel the charge on the prouve. In the cylindrical case, the sheath velume
per unit prcbe surface area is smaller 1or a given sheath thickness Lacause of
the gecemelry. The sheath edge must therefore tend %o lie farther from the

Figurz 39 alsc shovs part of the trapped-orbis boundarvu The
portion of this ‘tourdary corresgonding to smaller values of My_ /ﬂ ot shown
because Lhe computer program was anahle to produce reswlts in th1c reglor
(Appendix ). This Lrapped-orbit homdary, and all others shown on diagrams
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which refer to the cylindrical prove, refer only to the inner family ot trapped
orbits discussed in Sec. VIII.

Ion or electron current is plotted in Fig. 39 as a function of
probe potential for T+/T_ = 1 and various values of RP/AD s corresponding to
Fig. 20 for the sphere. In comparison, the current collection for the cylinder
increases considerably more slowly with increasing probe potential. In contrast
with the sphere, it remains orbital-motion-limited at non-zero values of Rp/AD_,
For instance, the curve for RP/AD = 2 in Fig. 39 coalesces with the orbital-
motion-limited result (Eq. 14.5a with 75 = 1) at epy/KT_ = = 2.9. Figure 50b
may be used to verify this value. Figure 39 also sgows the trapped orbit boundary.

Figure L0 shows ion collection as a function of probe potential
for T+/T_ = 0 and various values of RP/KD . This diagram corresponds to Fig.
21 for the sphem¢, except that the correct form of the electron distribution
for small probe potentials has been used in the cylindrical case. Another
‘difference between the two diagrams is that current collection for the cylinder
remains finite in the limit R,/Ap — O and becomes orbital-motion-limited for
non-zero values of Rp/A _ as this limit is approached. The result in Fig. L0
corresponding to Rp/RD-.= 0 is that of either Eq. (14.5a) or Eq. (14.6b) with
g set equal to zero. N

Electron collection is shown in Fig. 41 as a function of probe
potential for various values of RP/AD_ and fyr T4+/T. = 0, i.e. for the case of
zero-temperature repelled particles, corresponding to Fig. 22 for the sphere.
Part of the trapped-orbit boundary is showni. The reason why a section of it is
not shown has been discussed in connection/with Fig. 38 which corresponds to the
same cases as those of Fig. 41. As in thq/spherical case, for increasing values
of RP/AD_ the electron collection initially decreases more rapidly when the ions
are at zero temperature than when they aﬁ% at electron temperature. In contrast
to the results shown in Figs. 39 and 40,’current collection in Fig. 41 is equal
to the orbital-motion-limited result only in the limit as RP/AD_ —0. The rea-
son for this is that the orbital-motion-limited current cannot be attained in
the presence of a zero-potential sheath edge at any finite radius (Sec. XII).

In order to display more clearly the behaviour of the current at
small Debye lengths, the ion or electron collection has been plotted in Fig. 42
as & function of RD-/R for T,/T_ = 1 and various values of probe potential.
Trepped-orbit and orbital-motion-limited current boundaries are shown. The me-
thod of obtaining the location of the orbital-motion-limited current boundary
from the computed results is described later in connection with Fig. 50a. As
is the case with the trapped-orbit bounderies, all orbital-motion-limited
current boundaries shown in this and subsequent diagrams refer to a fully Max-
wellian plasma, with the understanding that zero-temperature attracted particles
are included as a special case.

The corresponding dependence of ion collection on %D_/RP for
T+/T_ = 0 is shown in Fig. 43 for various probe potentials. In comparison with
Fig. 42, both the trapped-orbit and orbital-motion-limited current boundaries
in general lie at larger values of Rp/Ap. for any given probe potential.
Figure 50a and 50b also show these boundaries. The kink in the current-collection
curves of Fig. 43 occurs because when the attracted species is at zero temperature,
it is mono-energetic, and the discussion in Sec. VIII applies.
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Figure <« uhiow o coddeebion ao n Daactior o0 Ay sRo lor
wp/tTa = =Y ana vaiues of To/Uo of o, LWY, und 1. In coutrast with Fig. 23,
which shows the correcponding results for the sphere, the 1on current is boundec
at. lurge values of AD_/Rp and smull values of T4+/T_, for any given probe potential,
Current results for mono-energetic ions are shown for comparisonjonce again,
the result for T+/T. = O is a member of hoth the Maxwellian and mono-energetic
families of results. There is seen to be a range of values of Ap_/R, in which
the current collection at fixed Mp./Rp is not a monotonic function of T4+/T..
A detailed comparison of Figs. L2 and 33 shows that this occurs only for wvalues
of -e¢p/kT_ greater than about 10. The trapped-orbit boundary is also shown.

Electron collection results have been plotted in Figs. 45 and 46
as functions of 7\D_/Rp and Ry/Ny_, respectively, in order to illustrate the
behaviour of the current collection for both small and large Debye lengths.

These results are nlotted for e¢p/kT_ = 25 and values of T+/T_ of 0, 0.5, and 1.
These diagrams correspond to Figs. 25 and 26 for the sphere. Figure 45 shows the
trapped-orbit boundary in incomplete form since its location for T./T_ = O is

not available, as discussed in connection with Fig. 38. As in Fig. 25, the re-
sults for T+/T. = O in Fig. 45 include the end point for RP/KD_ = 0 since the
limiting result i_ = 1 is known. Current collection for Maxwellian electrons
tased on the planar-sheath approximation is also shown again in Fig. 45. Figures
45 and 46 also show corresponding current collection results for mono-energetic
electrons. In contrast to the spherical case of Fig. 26, current collection for
non-zero values of T,/T_ in Fig. 46 is seen to be orbital-motion-limited, i.e.
not a function of Rp/Ap_, over a non-zero range of Rp/Np_.

_ Figure 47 shows ion collection for egp KT_ = =25 and electron
collection for ep /kT_ = 25, as functions of T,/T_, Tor Rp/%D- = 10. Results
for mono-energetic attracted particles are shown for comparison. The Maxwellian
and mono-energetic ion current results are seen to coalesce as T4+/T. -0, as
must be the case (Sec. XIIT). Since the electron collection result for a posi-
tive probe in the limiting case T+/T_ = 0 is calculated by a different program
(Appendix I) than the results for non-zero values of T4/T_, the fact that these
results are seen to join smoothly in Fig. U7 serves to verify the operation of
both programs. We also note that the ion current for the negative probe is
equal to the electron current for the positive probe when T+/T_ =1, as it must
be (Sec. III).

Ion collection is shown in Fig. 48 for Rp/Mp_ = 10 as a function
of both T+/T_ and probe potential. This diagram corresponds to Fig. 28 for the
sphere. The trapped-orbit boundary is shown, as well as the current collection
for mono-energetic ions for T,/T_ = 1 and for egp,/kT. = -25. In contrast with
Fig. 28, the ion collection is seen to be a monogonic function of ion temperature
for the cylinder for Rp/h _ = 10; the fact that this is not true for some values
of RP/KD_ has been noted in connection with Fig. L4, The curve for T /T_ = 0 is
seen to be complete in the cylindrical case, unlike that for the sphere.

Figure 49 shows electron current as a function of probe potential
for R /AD_ = 10 and values of T,/T_ from O to 1. This diagrem corresponds to
Fig. 89 for the sphere., In comparison, the increase in current collection with
probe potential is smaller in all cases, and the inner family of trapped orbits
(Seec. VIII) occurs at smaller probe potentials in the cylindrical case then
trapped orbits occur in the spherical case.

49




Trapped-orbit and orbitel-motion-limited current boundaries are
plotted in Fig. 50a for an ion-collecting probe for values of Ta/T. of 0, 0.5,
and 1. This diagram corresponds to Fig. 30 for the sphere; in contrast, the
trapped-orbit boundary position is for nearly all values of probe potential seen
to be a monotonic function of T+/T. in the cylindrical case. In this case,
trapped orbits also exist at larger values of R /AD than in the corresponding
spherical case; this is because the potential in the cylindrical case is
generally more shallow in form (Sec. VIIT). Another difference between Figs.
30 and 50a is that in the spherical case, no orbital-motion-limited current
boundaries are shown since there are no non-zero values of R,/Ap_ for which
this amount of current is actually collected; a discussion of the reasons for
this difference appears in Appendix E. These bounuaries have been obtained in
the cylindrical case by obtaining as computer output for a sequence of cases
the value of the maximum energy level for which current collection is not
orbital-motion-limited (Sec. VIII; Table 3) and extrapozating this result to
zero as a function of either probe potential or Ry/Ap_. Figure 50b shows the
data of Fig. 50a plotted on a larger scale in R RD to show more clecrly the
location of the orbital-motion-limited current boundarles.

Figure 51 shows the same boundaries as those of Fig. 50 in the

;. case of an electron-collecting probe. This dlagram corresponds.to Fig. 31 for

‘the sphere. The trapped-orbit boundary for T4/T_ = O is incomplete as in Figs.
38 and 41. The boundaries for T,/T_ = 1 are the same as those for ion collection
in Fig. 50, as they must be (Sec. III).

It is clear from examination of the preceding diagrams that
much off the information computed here for both the spherical and the cylindrical
probes is in the region where trapped orbits exist. The fact that populating
these orbits in any particular case is likely to cause a decrease in the attracted-
species current has been pointed out in Sec. VIII. Since no quantitative pre-
dictions exist of the magnitude of these effects, it is evident that theoretical
or experimental investigation of them would be of great value in finding out
whether in any given situation they appreciably affect the current collection.

It is noteworthy that Bernstein and Rabinowitz (Refs. 5 and 21)
were sufficiently concerned about this probiem to forego carrying out their
mono-energetic calculations in the trapped-orbit region. However, important
cases are believed to exist in which the population of these orbits will be
negligible (Sec. VIII); the obtaining of these results was accordingly considered
to be a worthwhile task.

This completes the discussion of the computed results of this
investigation. As noted in Sec. XV, these results may be applied by scaling
of the appropriate parameters to situations involving multiply charged ions
and values of T4+/T. greater than 1.
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The theory and numerical calculations which form the subject of
this investigation have been carried out as part of a coordinated project in
the development of plasma diegnostic techniques at U.T.I.A.S. As part of this
project, experimental work closely related to the work described herein has
been performed by Graf (Ref. 3) and Sonin (Ref. 4). Results of this combined
investigation have also been reported in Ref. 19. -

Reference 3 reports the results of a comparison made between
Langmuir probe and microwave measurements on the subsonic portion of a free-
expansion argon plasma jet. Figure 52, which has been obtained from the re-
sults of Ref. 3 as they appear in Ref. 19, shows a comparison of electron num-
ber density results obtained using these two techniques. The Langmuir probe
measurements used in constructing this diagram were made using a cylindrical
probe of large length-to-diameter ratio aligned parallel to the local flow
direction; numerical results which appear in Table 6 were used in calibrating
this probe. :

Reference 4 reports the results of experiments undertaken to :
compare the experimentally measured current collection of cylindrical probes -
with the results of this investigation (Table 6) and with results obtained from
other theoretical formulations (Sections I, V, XIII)., These probes were used
under essentially similar conditions to those mentioned above in connection
with Ref. 3. Figure 53 is reproduced from Ref. 4. This diagram corresponds to
a situation in which the ion to electron temperature ratio was nearly zero
and shows ion current Ij measured at 10 dimensionless units below the floating
potential Xf, plotted as a function of (R,/Ap)@ Ij(Xp-10) where R My is in Fig.
53 the ratio of probe radius to electron Debye length. Numerical results of
this investigation, and results calculated by Chen (Ref. 8) are shown for come-
parison. It is seen that at larger values of the abscissa in this diagram, the
experimental results give good agreement with the theoretical results obtained
here rather than with those of Ref. 8, which are based on the zero-angular-momentum
or radially-inward-motion assumption for zero-temperature ions. The implications
- of this assumption have been discussed in Sec. XIII; the experimental data shown
in Fig. 53 therefore amount to a verification of the assumption made here in
this investigation that the zero energy ions have a uniform distribution of
angular momentum far from the probe. In other words, their distribution is
?orrectly redicted by the zero-energy limit of the mono-energetic distribution

Sec. XIII).

It is also seen in this diegram that the experimental points de-
part from the theory at the point where the theory predicts that the current
becomes orbital-motion-limited and no longer increases. This effect must almost
certainly be a collisional one; it means that a significant number of ions pre-
sumably undergo collisions while orbiting by the probe and are deflected so as
to strike it when they would otherwise miss it. The purpose of this investigation
has been to explore the implications of a collisionless theory, and calculations
involving collisions are beyond its scope. However, this diagram illustrates
the fact that it is possible to find some situations in which the collision. -
less results are much more sensitive to the presence of collisions than in
other cases.
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The foregoing questions are discussed in more detail in Refs, 3
and 4, which also contain complete descriptions of the experimental procedures
involved. Reference 19 has been written as a summary of some of the results
of this combined research progrem; it also contains further information on the
relationships between this theory and the experiments just described.

XVIII. CONCLUDING REMARKS

A method has been developed and used to obtain theoretical pre-
dictions of the current collected from a collisionless, fully Maxwellian plasma
at rest by an electrically conducting Langmuir probe having spherical or cylindri-
cal symmetry; the results for the cylinder have the advantage of being appli-
cable to an aligned probe in a flowing plasma. The probe characteristic has
been determined for both spherical and cylindrical geometries for probe radii
up to 100 times the Debye shielding distance of the hotter species of charged
particle, for a complete range of ion-to-electron temperature ratios, and for
probe potentials from -25 to 25 times the thermal energy of the hotter species.
Results have been presented explicitly for temperature ratios in the range
0 < T+/T. < 1, and it has been indicated (Sections IX, XV) that results for
greater values of T+/T_ may be obtained from these by scaling the apprapriate
rondimensional parameters. Each current collection result has been computed
to a relative accuracy of 0.002 or better in an average time of approximately
two minutes on the IBM 7094 at the University of Toronto.

Maxwellian velocity distributions and finite current collection
have been assumed for both ions and electrons. The key to the construction of
a workable computation scheme has been the replacement of the infinite plasma
by an outer boundary at a finite radius, beyond which a power-law potential is
specified. Experience with the computer program has in most cases shown that
the computed results are remarkably insensitive to the precise location of this
boundary, so that it may be placed relatively close to the probe surface, at a
major gain in computation economy without appreciably disturbing the results.

The problem defined by these assumptions is expressible as a
nonlinear system of integral equations, which has been solved numerically by an
iterative scheme involving a sequence of successive approximations to potential
and charge density distributions. An extension of the method of Bernstein and
Rabinowitz (Refs. 5, 21) has been used to provide charge densities for ions
and electrons at each step in the iterative process. The iteration has been
found to be divergent in general, and convergence has been forced by modifying
the computation scheme to provide mixing of each successive charge density re-
sult with its predecessori, The procedure does not assume any a priori separation
into sheath and quasi-neutral regions.

- Calculations based on the assumption of & mono-energetic distri-
bution for the attracted particles have been made within the framework of this
computation scheme, in order to provide explicit comparison with the results for
& fully Maxwellian plasma, and to provide an efficient first approximation for
computations with the Maxwellian plasma. In general, the results based on the
mono-energetic model have been found to be a good approximation to those for the
Maxwellian plasme for values of Rp/Ap_ greater than about 5 but show marked
deviation from them for smaller values of Rp/Ap_ (Figs. 23 to 26, L4 to 46).
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It has also been shown that the difficulties encountered by
Bernstein and Rabinowitz (Ref. 5) in computing the ion current for the cylinder
in the zero-ion-temperature 1limit are illusory, and that the computations of
Chen (Ref. 8) for this case do not take into account the fact that the ion
temperature acts as a singular perturbation.

Experimental results by Sonin (Ref. 4), using a cylindrical
probe have been cited in Sec. XVII to indicate that even in the zero-ion-
temperature limit, the current collection appears to be correctly predicted
by the assumption of a uniform distribution in angular momentum as made here,
rather than by the radially inward motion assumption made by Chen (Ref. 8).

It is also pointed out in Sec. XVII that an exception to this occurs for values
of R /%D in the orbital-motion-limited range, where the ion collection rises
above the orbital-motion-limited value and hence disagrees with either theory,
apparently because of collisional effects (Fig. 53).

Although the computation scheme used in this investigation to
obtain results in the general case has been found to break down in certain
extreme ranges of the plasma parameters, modifications or simpler theories have
been found to give end-point data at nearly all of these limits, particularly
- when either the repelled or attracted species is at zero temperature (Sections
XII, XIII, Appendix H). In the case of zero-temperature repelled particles,
the modifications involved a major effort and allowed results to be obtained
in an area in which up to now, even for the simplified case of mono-energetic
ions, no results exist in the literature.

Computed charge density and potential distributions, as well as
trapped-orblt and orbital-motion-limited boundaries and certain other informa-
tion, have been presented graphically. Computed probe characteristics have
been presented in both graphical and tabular form (Sections XV and XVI, Tables
5 and 6). A listing is included of the Fortran programs used to obtain these
results (Appendix I).
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TABLE 1

Maximum Number Density Nmax K of a Species of Charged Particles Whose Scattering
Distance Sy is to be Larger Than One Probe Diameter,As aFunction of Rp/lg and T

Ry/Ap Epax. T = 1030k T-2x10"%
2.5 6.34 4.3 x 102 3.5 x 1017
10 0.712 5.5 x 1013 4.4 x 1017

100 0.0415 1.85 x 101t 1.48 x 1019




TABLE 2

Asymptotic Potentials at Large Radius

+

Spherical Cylindrical

Symmetry . Symmetry
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Current-Collecting $ ar par
Probe
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Particles at Zero
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TABLE 3a

Partial List of Correspondences Between Text Symbols and

Fortran Variable Names

Text Reference Text
Symbol
Eq. (9.1) x
x2
Eq. (D.2) s
Eq. @.2) dx/ds
r/Rp
iy
Eq. (5.1) M(r)
Eq. (9.1) X
Eq. (D.2) dx/ds
Eq. (9.1) 1
Eq. (9.7) N4
Bq. (9.7) .
Eq. (E.28) g
" : aG
Eq. (E. 29) oG
Eq. (E.31) €q
APFENDIX D ¥sKoaKa
APPENDIX D y
Eqs. (D.21) Y

FFN- Fortran Formuls Number

Fortran
Variable
Name

X

XsQ

DXDS
ROP

SCOT

COOK

DXIDS

ETAPS

BETAG
ALFAG
EPSG

Program Reference

Main Programs 1 and 2 and
Related Subprograms

FFN 362%, 256%
FFN 18+, 255%
Function COOKIE

Main Programs 1 and 2 and
Related Subprograms

Subprograms Charge, Chamon,
Cal

"
"
"

"

FUNCTIONS CHARGE, CAL

Main Programs 1 and 2,
FFN 33,38, 34

" Function CAL, FFN 290

Main Programs 1 and 2,
FFN 34, 35

* Nearest Numbered Formula




TABLE 3a

(continued)
Text Reference Text Fortran Program Reference
' Symbol Variable
' Name
Figure 5; If SHy SI, SH Subroutine Charge,
the value of s FFN 320
at point D is
the value of the
Fortran Varisble
S(I), Then the
value of S at
Point L is the
value of SH(I).
It follows that
sy is Stored in
SH(1)
T PI Main Programs 1 and 2,
FFN 101
N SQTPI
1/m VIPI
1N SAY
Eq. (D.21) As DELTS Main Programs 1 and 2,
‘ FFN 16%
Egs. (3.2), (9.1) 7+ GAMMA Main Programs 1 and 2
I
T3 PI3
3 PI6
SB o P
i, YPOS
. YNEG
Figure 5b, 68,100 By BETH
Figure 10a Bc BETH
By f
e ORe ¢ EXY *
Smallest and . SW, SWA Subroutine Charge
Largest Values
of 8 at Which

Locus of Extrema
Enters First
Quadrant




TABLE 3a

(concluded)
Text Reference Text Fortran Program Reference
Symbol Variable
‘ Name

Values of B corre- BETAW, Subroutine Charge
sponding to above BETAWA
values of s
Smallest and larg- SCRIT, . Subroutine Charge

est values of s at : SCRITA -
which maxima occur :
in locus of extrema
Coordinate indices LK, LKA
corresponding to smallest
values of s, if any,
for which the point H
in Figs. 5 and 6,
corresponding to the
cutoff boundary tan-
gent at s, is not in
the first quadrant

Eqs. (E.b5),(E.67) M AMU Fuctions DYO, TRY
Eqs. (E.45),(E.67) 8 THETA Functions DYO, TRY
Egs. (9.4),(11.7) BM ENG Subroutine Chamon,
FFN 535, 536
~——= Eq. (9.100) 14, YEN Main Program 1, FFN 357
Eq. (13.6a) 1* CURRNT Main Program U
Appendix D (dx/dx)s « EDGE Mein Programs 1 and 2
Fig. 8 KCase LINK Subroutines Charge,
Number . First, Second, Third,
Fourth (Sphere and Cylinder)
Eq. (E.3) K CAPPA Functions DUO, DYO
Eq. (E.5) By AMDA Function TRE
BH Function TRY
Ratio of largest REKRIT Subroutine Charge, FFN 23k
Trapped-orbit RTRAP Subroutine Charge, FFN 2L1l,
radius to Ry Subroutine Chamon, FFN 481#
Ratio of largest STRAP Main Program 4, FFN 99*

Trapped-orbit radius
to Ap.



TABLE 3b

Text Equation

Fortran Formula Numbers

Fortran Formula

Partial List of Correspondences Between Text Equations and

Program Reference

\; Number
é; (9.4),(13.1¢) 535 Subroutine CHAMON
‘%f (5.1),(9.7) Lo Main Programs 1 and 2
g (9.8) 103* Subroutine CHARGE
'  Loox Subroutine CHAMON
(9.10b) 357 Main Program 1
(9.16) 16% Main Program 1
102 Subroutine CHARGE
(9.15) T06%, 712% Subroutine CHARGE
‘ 331%, 308% Subroutine CHAMON
(12.7),(13.2¢) 536 Subroutine CHAMON
(12.5) 750 Subroutine THIRD (Sphere)
(12.6) 108%, Thé* Subroutine THIRD (Cylinder)
(13.1a) 438, Lo, Subroutine CHAMON
; Lk, 446,
452, ksh
3 (13.16) 456 Subroutine CHAMON
(13.2a) 439, kb1, Subroutine CHAMON
Lus, LuT,
453, 455
(13.2p) 530 Subroutine CHAMON
(13.3a) 46, 452 Subroutine CHAMON
(33.ka) "Lk, 453 Subroutine CHAMON
(13.13), 2T*, Lax, Main Program 4
(13.14) L8*, 177
(14.1),(E.43) 751, 20k Subroutine THIRD (Sphere)
(14.2),(E.94) 180*, 204 Subroutine THIRD (Cylinder)
(D.2) 33 Main Programs 1 and 2
(D.7),(D.8) 39%, 39 Main Programs 1 and 2
(D.10) 326 Main Program 1
(p.11) | 325 Main Programs 1 and 2
(p.12) 281 Main Programs 1 and 2
(D.15),(D.16) 285+, 285 Main Programs 1 and 2
(p.18) 331 Main Program 1
(D.19) 330 Main Programs 1 and 2

* Nesrest Numbered Formula




TABLE 3b

(continued)
Text Equation Fortran Formula Program Reference
Number
(D.21) 34, 35 Main Programs 1 and 2
25, 32 Main Program 3
(D.22) 332 to 337 Function CAL
(E.3) 501% \ Function DUO
205% Function DYO
(E.5) Lol Function TRE
: 35% Function TRY
(E.1) Function UNO
(E.2) : Function DUO
(E.4) Function TRE
(E.10) Function DYO
(E.11) , Function TRY
(E.17),(E.k2) 176, 751 Subroutine THIRD (Sphere)
(E.17) 176,745,180% Subroutine THIRD (Cylinder)
(E.18) 177%,571,204 Subroutine THIRD (Sphere)
177 , 571, 204 Subroutine THIRD (Cylinder)
(E.19) 552%,552 4 _ Subroutine FIRST (Sphere or
551 , 560% Cylinder)
(E.20) 552%, 556, Subroutine FIRST (Sphere)
560%, 562
552%, 556, Subroutine FIRST (Cylinder)
571, 573,
560%, ST5%
(8.21), Function COEFT
(E.22)
(E.23) 305 " Function UNO
(B.25) 506 Function DUO
(E.27) 406 Function TRE
(E.30) 126¢ Subroutine CHARGE
126 Subroutine CHAMON
(E.31) 126 Subroutine CHARGE
(E.32),(E.33) 221, 292 Function CAL
(E.34),(E.89) 560 Subroutines FIRST
54om Subroutines SECOND
750,180% Subroutines THIRD

320 Subroutines FOURTH



TABLE 3b
(concIuded)”-

Program Reference

Text Equation Fortran Formula -
. Number .
(E.35),(E.90) 562% , 575% Subroutines FIRST
' - 750 , Thé* Subroutines THIRD
‘ 370, 375* Subroutines FOURTH
(E.36),(E.91) 226, 310 Function CAL
(E.39) 177, 177* . Subroutine THIRD (Sphere)
(E.Lb) 200,190,84 Function DYO
(E.52) 10% Function DYO
(E.53) 50 Function DYO
(E.57) 125% Function DYO
(E.58) 116+ Function DYO
(E.59) 102% Function CDO
(E.60) to (E.65) 199 to 216 Function DYO
(E.66) | 19, 72, T3 Function TRY
(E.69) to (E.T2) 40 to 16 Function TRY
(E.T3) 22w Function TRY
(E.76) to (E.78) 41 to 501 Function TRY
(E.82) 508, 509 Function TRY
(E.84), (E.85) 525 to 510 Function TRY
(E.89) 316% Subroutine CHARGE
317. Subroutine CHAMON
(8.87),(E.68) 221, 294 Function CAL
(E.92) ‘177, 571 Subroutine THIRD (Cylinder)
(F.9) 30% Main Program 3 |
(F.15) 25,32 Main Program 3
(F.16) 23 Main Program 3
(G.14) . Subroutine POWERS
(6.15) 140 to 152 -

Main Program 4




TABLE L4

Suggested Computation Net Spacings and Outer Boundery Radii for Use With

Program 1
Sphere: T,/T_ =1; xp_ = t o5
Ro/M_ As  Points ds Rp Rp - R
: P Per Np ( ax/ o 8 R 2
at Probe 'p P D
0.5 .0667 30 -1 2.8 16.L44 T.T
1 .05 20 -1 2.4 11.02 10.0 °
2 .0333 15 -1 2.0 7.39 12.8
5 .0133 15 -1 0.80 5.00 20.0
10 01 10 -1 0.72 3.57 25.7
20 .005 10 -1 0.56 2.27 25.5
50 .005 10 2.5 0.56 1.64 31.8
100 .005 10 -5 0.50 1.k0 40.3
Cylinder: 0 < T+/T. < 1 ; xp_ = 25
Ro/MD. As Points ds\ Rp Ry - R
2 Fer Np (“">r=n ? R _B-’T'R
at Probe P
1l .025 4o -1 2.9 18.17 17.2
2 .025 20 -1 203 9-97 1709
5 01 20 o -1 0.80 5.00 20.0
10 001 10 ‘1 0072 3.57 25.7
20 .%7 705 "1 Oo& 2.50 30.0
50 001 5 .205 0056 1.6’“ 3108
100 .01 5 =5 0.56 1.53 53.4




TABLE 5a

Spherical Probe; Ions at Zero Temperature; Electrons Not Collected by Probe Surface;
Ion Currents Obtained from Solution of the Allen, Boyd and Reynolds Equation

Rp/Mp_ = 0.5 Rp/Ap_ = 0.75 Rp/Mp_ = 1.0 Rp/MAp_ = 1.5
e¢p/ KT. B e‘bp/ kT, i:. e¢p/ kT,  i4. e¢p/ kT, i4.

0.3136 4,0000 0.1250 1.7778 0.0563 1.0000 0.0145 0.4hLk

0.8115 8.0000 0.3575 3.5556  0.1767 2.0000 0.0525 0.8889

1.45094 12,0000 0.6540 5.3333 0.3393 3.0000 0.1088 1.3333

2.0770 16.0000 0.9970 7.1111 0.5339 4 ,0000 0.1807 1.7778

2.8011 20.0000 1.3787 8.8889 0.7557 5.0000 0.2663 2,2222

3.5843 24.0000 1.8017 10.6667 1.0076 6.0000 0.3678 2.6667

5.2656 32.0000 2.7292 1h4.2222 1.5718 8.0000 0.6035 3.5556

7.0923 40.0000 3.7614 17.7778 2.2163 10.0000 0.8865 L Lhuh

10.56 54,0000 5.77 2k .0000 3.50 13.5000 1.482 6.0000
12.15 60.0000 6.69 26 ..6667 4,10 15.0000 1.769 6.6667
17.8113 80.0000 10.0603 35.5556 6.3338 20.0000 2.8855 8.8889
23.9553 100.0000 13.7698 Lk ulhy 8.8363 . 25.0000 4,1972 11.1111
30.4775 120.0000 17.7467 53.3333 11.5497  30.0000 5.6611 13.3333
26.4155 T71.1111 17.5429 40.0000 9.0028 17.7778

24.1979  50.0000 12.8173 22.2222
31.3254 _ 60.0000 16.9775 26.6667

. 26.3051  35.5556
RJAD- = 2,0 RJAD- = 205 WAD- = 3.0 RJM. = ll».O
- /Rl A cebp/MT. 4y, cedp/KI. i -edp/KT. L4,
0.0191  0.5000 0.0180 0.4800  0.0157  O.hbik 0.0111  0.3750
0.0411  0.7500 0.0316 0.6400 0.0246  0.5556 0.0202  0.5000
0.0708 1.0000 0.0488 0.8000 0.0347  0.6667 0.0317 0.6250
0.1075  1.2500 0.0693 0.9600 0.0617 0.8889 0.058 0.8438
0.1522 1.5000 0.1214  1.2800 0.0967 1.0l 0.073 0.9375
0.259%  2.0000 0.1882 1.6000 0.179 1.5000 0.1322  1.2500
0.3932 2.5000 0.340 2.1600 0.219 1.6667 0.2150  1,5625
0.688 3.3750 0.415 2.4b000  0.3964  2.2222 0.3191  1.8750
0.833 3.7500 0.7366  3.2000 - 0.6359  2.7778 0.6164  2.5000
1.4259 5.0000 1.1550 4.0000 0.9313  3.3333 1.0381 3.1250
2.1616 6.2500 1.6575  4.8000  1.7171 L. hhuk 1.5921  3.7500
3.0136 7.5000 2.9250 6.4000  2.7UT8  5.5556 3.1198  5.0000
5.0479 10.0000 4.5001  8.0000  3.9872  6.6667 5.1487  6.2500
7.4572 12,5000 6.3168 9.6000 T7.0478  8.8889 6.6316  7.0313
10.1480 15.0000 10.6207 12.8000 10.7385 1.1.1111  8.2427  7.8125
16.3272 20.0000 15,6457 16.0000 13.3015 12.5000 10.0306  8.5938
23.3638 25.0000 19.0763 18.0000 16.0195 13.8889 11,9001  9.3750
28.1026 28.1250 22.68k2 20.0000 18.9623 15.2778  13.8188 10.1250
33,0521 31.2500 26.5548 22.0000 21.9963 16.6667  16.2165  11.0000
© 30.5252 24,0000 25.0659 18.0000  20.5608 12.5000
‘ 28.8479 19.5556 25.§359 1&.22001
' 30,6338 15.6250




TABLE 5a (concluded)

Rp/Mp_ = 5.0 Rp/Mp_ = 7.5 Rp/Mp_ = 10 Rp/MAp_ = 15
-e¢p/kT- i+- -@dl&- i+- -e¢p/ﬂ- i+- -e¢p/kT- i+-
0.0128 0.4000 0.0104  .0.3556 0.0129 0.4000 0.0100 0.3556
0.024 0.5400 0.0163 0. ulLy 0.0207 0.5000 0.0162 0.4ll4
0.029 0.6000 0.0236 0.5333 0.0299 0.6000 0.0211 0.5000
0.0541 0.8000 0.0431 0.7111 0.0562 0.8000 0.0260 0.5556
0.0855 1.0000 0.0696 0.8889 0.0929 1.0000 0.0315 0.6111
0.1271 1.2000 0.10L6 1.0667 0.1209 1.1250 0.0376 0.6667
0.2455 1.6000 0.2081 1.4z22 0.1589 1.2500 0.0452 0.7200
0.4148 2.0000 0.3680 1.7778 0.2009 1.3750 0.0532 0.7822
0.6493 2.4000 0.5137 2.0000 0.2546 1.5000 0.0716 0.8889
1.3553 3.2000 0.6912 2.2222 0.3139 1.6200 0.0942 0.9956
2.4107 4 ,0000 0.9244 2.4444 0.ko24 1.7600 0.1220 1.1111
3.2L67 4.5000 1.2009 2.6667  0.6000 2.0000 0.1966 1.3333
4,1936 5.0000 1.5221 2.8800 0.8772 2.2400 0.3104 1.5556
5.2873 5.5000 1.9801 3.1289 1.2889 - 2.5000 0.4922 1.7778
6.4589 6.0000 2.9282 3.5556 2.4710 3.0000 0.7682 2.0000
7.6883 6.4800 4.,0977 3.9822 4,1858 3.5000 1.2052 2.,2222
9.2571 7.0400 5.5930 L Lhhy 6.4377 4.0000 2.7249 2.6667
12,1543 8.0000 9.0476 5.3333 9.0921 4.5000 5.1857 3.1111
15.3356  8.9600 13.1432 6.2222 12.1481 5.0000 8.5188  3.9956
19.0671 10.0000 17.8576 7.1111 19.2713 6.0000  17.2951 L LuhL
26. 12,0000 23.0113 8.C000 o .0000

28.6300 8.8889
Rp/"D- = 20 RP/AD_ = 50 Rp/)\m = 100
-e¢p/kT- i+a -wp/ld- i, -e:t»p/kT- i,.
0.0112 0.3750 0.0131  0.40O00  0.0148  0.4250
0.0124 0.,k050 0.0190 0.4800 0.0167  0.4500
0.0160 O0.4k00  0.0266  0.5600 0.0207  0.5000
0.0211  0.5000 0.03L6 0.6400  0.0253 0.5500
0.0258 0.5600 0.0396 0.6800 0.0303  0.6000
0.0336 0.6250 0.0959  1.0000 0.,0363  0.6500
0.0496 0.7500  0.6781 1.7000 = 0.0493 0.7500
0.0703  0.8750 1.0751 1.8000  0.096L4 1.0000
- 0.0961 1.0000 3.0099 2.0000 0.3579 1.5000
0.1283  1.1250 7.0263  2.2000 1l.1372  1.T7000
0.1686  1.2500 12.8249  2.4000  2.9558 1.8000
0.2924 1.5000 20.0797 2.6000 12.5135 2.0000
0.5198  1.7500 , 19.6093  2.1000
0.9526  2.0000 21.85%2 _ 2,2000
3.0830  2.5000
7.2985  3.0000
13.2897  3.5000
20.6601 k4 .0000




i | .. Ion-Attracting Spherica.l Probe: ' Values of Ion Current i,
I \ ~r— - U s
For Values of T,/T_ Between O and 1

e¢p T+ . Rp E : i+_
kT _ T N - Ions Tons “Tons Mono-Energetic,
®  Maxwellian Mono-Energetic  Electrons ,.ot Collected
- ' by Prob®.Surface
-25 0.75 10 - 5.938 5.826 “ < -
-20 " " 5.350 5.249 ' S
=15 " oo - 4,708 4,620
-10 " " 3.978 3.902 ,
-5 " " 9,067 3.006 3.008
-1 " " o728 1.688 1.727
=25 0.5 10 5.838 5.709
-20 " " 5.263 5.145
-15 " " k.634 4,527
-10 " " 3.919 3.827
-5 " " 3.026 2.948 2.950
-1 " " 1683 1.633 1.691
-25 0.25 10 5.810 5.659
-20 " " 5236 5.102
-15 " "o k615 4.498 \ ‘
-10 " " 3911 3.803
i‘ -5 w " : 3030 E‘QIIO
-1 " " 1399 —- 1.607 - '1.693
‘ -25 0.1 10 i 5.795
-10 " " L8 3.911
- 7 n 1" 3.ﬁ
- 5 " " 3.’1“5
_3 " " 2.&
- 2 " ] 2.27
- 1.5 " " 2.039 1.973 2.045
- 1.0 " " 1.725 1.663 , 1.777
- 0.7 n " l.W~ _
- 0.5 " " 1.522
- 0.3 1" " 0. 5
- 0.1 " 0.986 -
-1 0.05 10 - 1.741 - 1.875 B
-25 0.75 1 2k . 166 23.536 (oML) - o S
-5 " " 6.196 -5.400 (om.g - 5.400 (OML)...~ .
-25 0.5 " 27.6% 28,475 (oML :
-5 . - e 7.085 6.261 (OML) 6.261 (OML).. -
-25 - 0.25 " 34l 36.953 _
- -5 " L 8.'% 8.354 (oML) 8.354 (OML)..;
-25 0.5 2 19.28 19,643 |
" " 3 lk.eg 14,148 ‘
" s 5 - 9.627 9.459
" 0 3.798° 3.698

" 2 :

(ML) - Orbital Motion Limited
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TABLE Se

Electron-Attracting Spherical Probe: Computed Values of Electron Current
For Values of T,/T.  Between O and 1

(Repelled Species Colder)

i.

ed T, R A ~ i. ; ;
—B F 7@ Electrons  Electrons Electrons Mono-
kT_ - D- Maxwellian Mono-Energetic Energetic, Ions Not
' ; Collected by Probe
Surface
25 - 0.75 10 5.629 2.595
25 0.5 10 5.156 5.102
20 " " L.641 L.592
15 " " 4,077 4.ob1
10 " " 3.446 3.418
5 " " 2.675 2,660
3 " " 2.276 2.268 2.268
1 " " 1.679 1.672 1.683
0.6 " " 1.473 1.457 1.467
25 0.25 10 4.614 4,580
25 0.1 10 4,233 k.216
20 n " 3 .m 3.7g)
15 " " 3 . 329 3‘ 326
10 " " 2.806" 2.808
7.5 . " 2,511 2.517
5 " " 2.180 2.190
3 " " 1 L ] %8 1 [ ] %2
2 " " 1.681 1.698
1.5 " ‘ n 1. 571‘
1.0 " " 1.451
0.7 " " 1.364
0.5 " " 1.296
0. 3 " " 1. 212
0.1 " " 1.090 ‘ ;
25 0.5 1l 20.412 20.635 {OML)-
" " e 15.261 17.324 ‘
" " 3 11.992 12,549
" " 5 8.397 8.423
" " 20 3.3718 3.317

(OML) - Orbital Motion Limited
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~ TABLE 6b

Ion-Attracting Cylindrical Probe:
Computed Values of Ion Current i,. For Values of T,/T_ Between O and 1

R i,.
T. Xﬁ Ions Ions Ions
- Maxwellian Mono-Energetic Mono-Energetic,
Electrons Not

Collected by
Probe Surface

BlS
|

§
N
N

3.238 3.182
3.075 3.026
2.891 2.856
2.768 2.753

2.587 2.5Th
2.383 2.369
2.138
1.957
1.805
1.594
1.425
l.30u
1.131
0.9283
0.7066
0.4926
2.875
2.650
2.380
2,01k
1.326
5.588
5.231
h.317
2.311
1.757
1.537
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OML - Orbital Motion Limited
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TABLE 64

Cylindrical Probe: Computed Values of Attracted-Species Current i, or i, For T4/T, = 1;
Attracted Species Mono-Energetic. Results For the Case of Repelled Particles Not

Collected by Probe Surface Are Shown in Brackets

;
$ . oo |/,
7 - ;T?-B 0 > 3 L 5 10 20 30 Lo 50 100
0 1.0 1.0
0.1 [1.0618 1.0618
(1.0618)
0.3 {1.1756 11,1756
(1.1756)
0.6 [1.3281 1.3281
| (1.3281)
1.0 |1.5077 1.5077  1.500
(1.5077) (1.5077)
1.5 {1.7058
2.0 |1.8832 1.8832 1.785
(1.8832) (1.802)
3.0 |2.1954 2.190 1.964
(2.193) (1.971)
5.0 l2.71n1 2.623 2.201
(2.624) (2.202)
7.5 |3.2480 3.2480 3.016 2.415
10.0 |3.7057 3.6u  3.335  2.589 |
15.0 |L4.4831 L2719 3.857 2.876 2.270 2.031 ., 1.818 1.638
20.0 |5.14kk 4.805 4.291  3.117  2.400 2.12k 1.972 1.879 1.668

25.0 |5.7298 5.7298 5.268 4.670  3.328 2,518 2.207 2.00 1.931 1.697




TABLE 6e
Electron-Attracting Cylindrical Probe:
Computed Values of Electron Current For Values of T+/T_ Between O and 1

(ML) - Orbital Motion Limited

ep T R
~2 =t =
kT T Xﬁ Electrons Electrons Electrons Mono-Energetic,
- - -  Maxwellian Mono-Energetic Ions Not Collected by
Probe Surface
25 0.75 10 3.166 3.108
" 0.5 " 2.915 2.861
" 0.25 " 2.628 2.583
" 0.1 " 2.h2k 2.393
20 0.1 10 2.263 2.237
15 " " 2.083 2.061
10 " " 1.870
7 n n 1.72h
5 " " 1.610
3 " L] 1.h71
2 " " 1.38).‘
l 5 " " 1.333
1 o Li] ” 1.273
0.6 " " 1.212
0.3 " " 1.147
0.1 " " 1.071
20 0.5 10 2.727 2.678
15 " " 2.517 2.473
10 " " 2.266 2.233
5 " " 1.940 1.919
1 " " 1.453 1.445 1.455
5 0.75 1 5.730 5.7298 éom-
" 005 l 5.“7 ’ 5072% m
" 0.75 2 5.#80 5.7298 ﬁOHL
" 0.25 2 4.980 5.7298 (oML
" 005 3 u0826 : 50“36
" " o S h.012 v : ‘0.062
" " 20 2.204 2.152
" " ” 1.692 1.6‘“‘ o
" " - 100 1.491 1.448 ’
" 2 5.287 5.7298 (OML)
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FIGURE 1
PROBES AND BASIC CIRCUIT
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FIGURE 2

COMPLETE LANGMUIR PROBE CHARACTERISTIC.
(AFTER REF. 2) ION CURRENT EXAGGERATED.
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FIGURES 4c and 4d: FAMILIES OF ATTRACTED-PARTICLE

ORBITS CORRESPONDING TO THE SAME TOTAL ENERGY E

AND VARIOUS VALUES OF ANGULAR MOMENTUM J, SHOWN FOR
SITUATIONS WHERE AN ABSORPTION BOUNDARY CORRESPOND-
ING TO THE ENERGY E DOES NOT OR DOES EXIST, RESPECTIVELY.



""Unpopulated" orbit
corresponding to the
same E and J¢ as
particle shown coming
from infinity

Absorption Boundary
ry(E)

FIGURES 4e and 4f: FIGURE 4e SHOWS THE ORBIT OF A
PARTICLE PREVENTED FROM REACHING THE PROBE BE-
CAUSE OF THE EXISTENCE OF AN ABSORPTION BOUNDARY,
FIGURE 4f SHOWS A TRAPPED ORBIT OF THE TYPE WHICH
EXISTS WHENEVER THE DEPENDENCE OF POTENTIAL ON
RADIUS IS LOCALLY SHALLOWER THAN AN INVERSE
SQUARE POTENTIAL, CREATING MINIMA IN EFFECTIVE
POTENTIAL FOR SOME VALUES OF J.
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FIGURE 6b

2
J.n

FIGURE 6

QUALITATIVE CHANGES IN THE PATH J23(E)
CORRESPONDING TO 3 SUCCESSIVELY INCREAS-
ING VALUES OF RADIUS r LARGER THAN THE
VALUE CORRESPONDING TO FIG, 5b.




FIGURE?7  LOCI OF EXTREMA IN THE (r, U) AND (J2, E)
PLANES, SHOWING EFFECTS OF IRREGULARLY
SHAPED POTENTIAL WELLS
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CASES 8,9, and 10 differ from
CASE 7 in the same manner as
CASES 2,3, AND 4 differ from
CASE 1
CASE 1

FIGURE 8: LOCI OF EXTREMA IN THE (J2, E) PLANE, SHOWING
THE 10 CASES FOR WHICH COMPUTATION OF CHARGE
DENSITY HAS BEEN PROGRAMMED.
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FIGURE 9:
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R Rp

POTENTIAL AND CHARGE DENSITIES NEAR
A PROBE SURFACE IN THE LIMIT OF ZERO-
TEMPERATURE REPELLED PARTICLES




‘ p 7 FIGURE 10a

FIGURE 10b

FIGURE 10: MODIFICATION OF THE FUNCTIONS N 1(f) AND
N 2(B) CAUSED BY THE PRESENCE OF A ZERO-
POTENTIAL OUTER BOUNDARY AT A FINITE
RADIUS. FIGURE1Ca CORRESPONDS TO FIGURE 3a :
FIGURE 10b CORRESPONDS TO FIGURE 6c¢ .
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FIGURE 13

POTENTIAL VS DISTANCE FROM PROBE SURFACEIN
TERMS OF EITHER DEBYE LENGTH. SPHERICAL™ROBE;
ed,/kT. = ¥ 25; T,/T. = 1; PLOTTED FOR VARIOUS “ATIOS
OF PRCBE RADIUS TO ION OR ELECTRON DEBYE LENGTH.
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FIGURE 14

ION AND ELECTRON CHARGE DENSITIES N + ANDM. VS
DISTANCE FROM PROBE SURFACE IN DEBYE LENGTHS;
SPHERICAL PROBE; e§,/kT_ = 25; T,/T. = 1; PLOTTED
FOR VARIOUS RATIOS 8F PROBE RADIUS TO ION OR
ELECTRON DEBYE LENGTH
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FIGURE 20 10N OR ELECTRON CURRENT VS PROBE POTENTIAL FOR

DEBYE LENGTH; SPHERICAL, PROBE; T4/T. » 1, DOTTED
CURVE SHOwS TRAPPED~ORBIT BOUNDARY.
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¢ FIGURE 2) ION CURRENT iy VS PROBE ENTIAL FOR VARIOUS TIOS
OF PROBE RADIUS TO ELECTRON DEBYE LENGTH: ION-
ATTRACTING SPHERICAL PROBE; Ty/T. = 0, ELECTRONS
REFLECTED BY PROBE SURFACE
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FIGURE 22 ELECTRON CURRENT i_ VS PROBE POTENTIAL FOR VARIOUS
RATIOS OF PROBE RADIUS TO ELECTRON DEBYE LENGTH;
ELECTRON-ATTRACTING SPHERICAL PROBE; T,/T. = 0
(REPELLED SPECIES AT ZERO TEMPERATURE), DOTTED
CURVE SHOWS TRAPPED-ORBIT BOUNDARY.
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FIGURE 24  ION CURRENT i,. VS /ZD FOR VARIOUS VALUES OF T,/T.
FROM 0 TO 1; SPHERICAL PROBE; e‘p/kT- = -25.
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ELECTRON CURRENT i. VS Ap /R, FOR VALUES OF T, /T.
OF 0, 0.5 AND 1; SPHERICAL PROBPE; eop/kT_ z 25,
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FIGURE 26 # CURRENT i. VS Ry/Ap_ FOR VALUES OF T, /T.
ON A"t.1 SPHERICAL PROBE edp /KT, = 25.
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FIGURE 27a ION AND ELECTRON CURRENTS COLLECTED BY ION - AND
ELECTRON-ATTRACTING SPHERICAL PROBE, RESPECTIVELY,
AS FUNCTIONS OF T4/T., FOR R,/Ap_ = 10 AND VALUES OF
ed,./kT. OF -25, -10, -1, 1, 19 and 25. RESULTS FOR MONO-
ENERGETIC ATTRACTED SPECIES WITH AND WITHOUT
REPELLED-SPECIES COLLECTION BY PROBE SURFACE SHOWN
FOR COMPARISON. |
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FIGURE 28  ION CURRENT i,. AS A FUNCTION OF e@y/kT. AND T,/T. FOR
A SPHERICAL PROBE WITH Rp/Ap_ = 10.  MONO-ENERGETIC
RESULTS SHOWN FOR T,/T_ = 1 AND FOR ef,/kT_ = -25 FOR
COMPARISON.
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FIGURE 30

TRAPPED-ORBIT BOUNDARY: UPPER LIMIT OF R,/Ap_ FOR
WHICH TRAPPED ORBITS EXIST; PLOTTED AS A FUNCTION
OF ef,/kT_, FOR VALUES OF T,/T_ OF 9, 0.25, 0.5 AND 1.0,
ION-ATTRACTING SPHERICAL PROBE.
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FIGURE 31

TRAPPED-ORBIT BOUNDARY: UPPER LIMIT OF R_/Ap_ FOR
WHICH TRAPPED ORBITS EXIST; PLOTTED AS A FUNCTION
OF. e#,/kT. FOR VALUES OF T,/T. OF 0, 0.5, AND 1.0.
ELECTRON-ATTRACTING SPHERICAL PROBE.
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FIGURE 32 POTENTIAL VS DISTANCE FROM PROBE SURFACE IN DEBYE
LENGTHS; CYLINDRICAL PROBE; efp/kT. =2 25; T,/T. = 1;

PLOTTED FOR VARIOUS RATIOS OF PROBE RADIUS TO ION
OR ELECTRON DEBYE LENGTH.
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FIGURE 36 POTENTIAL VS RADIUS FOR VALUES OF T./T. OF 0 AND 1;
ION-ATTRACTING CYLINDRICAL PROBE; R,/Ap_ = 10.
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APPENDIX A
Limits on the Validity of the Collisionless Boltzmann-Vlasov Equation

The idealized collisionless plasma represented by the Vlasov equa-
tion is an abstraction which describes the behaviour of a more general plasma
cnly in the limit as its number density N becomes small or its temperature be-
comes large. More precisely, it has been shown in a paper by Rostoker and Rosen-
tluth (Ref. 10) that the Vlasov equaticn is obtained from the full kinetic equa-
tion for the plasma in the limit as the number of particles in a Debye cube be-
comes large for each species in the plasma; i.e., as g = l/N%D3 -0, For a
plasma which has a finite N and T, there exists a finite value of g, which is
much smaller than unity in most cases of physical interest. It follows that in
& hypothetical sequence of physical situations in which all relevant non-dimen-
sional parameters are held constant except g, which is made to approach zero,
the effect of collisions must in some manner become negligible. In particular,
the distance traversed vy a particle in the plasma before it is appreciably
scattered from its collisionless trajectory oy encounters with other individual
particles must become large. We note again as in Sections I and III that the
collisionless plasma obtained in the limit as g = 0 still allows an individual
particle to be influenced by the electric fields of others, but only by their
collective macroscopic charge density rather than by their presence as individuals,
which is the subject of concern here.

Spitzer (Ref. 13) has shown that in such a plasma, i.e. one hav-
ing a small but non-zero value of g, corresponding to finite N and T, particles
are scattered out of their collisionless trajectories by numerous small-deflection
encounters with other particles, and that on the average, they are deflected
much sooner by an accumulation of these distant encounters than by single close
collisions.

These considerations serve to define a criterion which applies
to situations wherein a probe of given size is present in a plasma having
particular values of N and T. In such a situation, the results of a collisionless
theory may be expected to be useful for predicting current collection if the
average distance which the charged particles travel before being deflected
appreciably from their collisionless trajectories is large compared to the dia-
meter of the probe. Since the ions in the plasma have much greater mass than the
electrons, the amounts of scattering accumuiated by ions or by electrons as a re-
sult of encounters with ions or with electrons will, in general, be different
for each of the four possible combinations of these particles. By considering
separately each possible combination of scattered and scattering species, it is
possible to derive a set of four scattering distances for the plasma; the
smallest of these distances then becomes an upper limit on the probe size for
which the collisionless theory will apply.

In order to consider these four scattering processes separately,
it is here assumed that the scattering accumulated by a particle due to encounters
with particles of each species may be added linearly to find the scattering due
to simultaneous interaction with both.

In an incompletely ionized plasma, charged particles are als. de-
flected by collisions with neutral atoms. This process has been treated else-
vhere, for example in Chapters 3 and 5 of Ref. 14, Because of the short-range
nature of the interaction potential between a charged and a neutral particle,
collisions involving neutrals do not isually form the most severe limit on the
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collisionless theory if the degree of ionization of the plasma is greater than
a few percent.

The derivation given by Spitzer (Ref. 13) assumes that a test
particle moving through the plasma is deflected by a sequence of independent
binary encounters with the unmodified Coulomb fields of nearby particles. This
assumption is untrue since the test particle is under the influence of many
other particles at any given time. However, Spitzer shows by a physical argu-
ment that his results may be expected to approximate usefully the actual bshaviour
of the test particle. It has also been shown by Sundaresan and Wu (Ref. 15)
that expressions for the thermal conductivity of &« plasma, obtained using
Spitzer's assumption, are in good agreement with results obtained by a rigorous
solution of a truncated form of the B-B-G-K-Y hierarchy.

We now consider the four scattering processes mentioned earlier.
The ion-ion and electron-electron processes may be considered together. It may
also be shown that in the limit of small deflections, arni for a given impact
parameter and initial velocity, an electron is scattered the same amount (except
for sign) by an encounter either with a stationary ion or with a stationary
electron. In the case of the encounter with an ion, the reduced mass (Ref. 13)
for the encounter is nearly the electron mass, and the mass-center encounter
coordinates coincide closely with the laboratory reference frame. For the
electron-electron encounter, the reduced mass is one~half the electron mass.
However, the transformation from mass-center ‘to laboratory coordinates decreases
the scattering angle by one-half (Ref. 11), and the two effects cancel. There-
fore, a test electron moving much faster than the random thermal velocity ex-
periences the same amount of scattering from ions as from other electrons.

Spitzer also shows that the dominant effect on a test particle
moving at or above the random spead of the field particles is transverse scatter.
In this situation the distance of interest is that in which it is scattered
through a large angle; Spitzer uses as a reference an angle of 90°. In the
fourth case to be considered, that of an ion test particle moving through elec-
tron field particles, the ion normally is moving much more slowly than the
electrons and the dominant effect is to cause the ion to lose its forward mo-
mentum. In this case, the distance of interest is that in which it is effectivaly
stopped.

In order to study the first three of these four types of scatter-
ing, we consider a test particle with velocity v and mass m traversing a plasma
which consists of one species of charged particle having a Maxwellian velocity
distribution. Let m) be the mass of each field particle in the plasma and let
T; and N) be the temperature and number density of the field particles. Let q
and q; be the charge on test particle and field particles, respectively. Let
b, be the impact parameter between test particle and field particle that would
correspond to 90° deflection if the field particle were infinitely massive. Let
tc and ty be the average time taken by the test particle to deflect through 90°
by a single close encounter and by many small-angle encounters, respectively.
Making use of Eq. (5.22) in Spitzer, we obtain
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Y is a function of the ratio of test particle speed to field
particle thermal speed. When this ratio is lurge, ¥ - 1. For ratios of order
unity,Y is somewhat less than 1, so that esimates of deflection time based on
¥ =1 form a lower bound on the actuval value, and are therefore conservativa.

In general, tg << t¢, so that most particles are deflected from
their collisionless trajectories by multiple small-angle encoumnters.

We assume that ¥ = 1, that q; = q, aud that the test particle
has the same energy as the average over field particles. We then have:

m 2 _3

5 v = > k Tl (A'a)
b, = q2/12me KT, = 1/12mi) A2 (A.3)
A = Nyfo = 1200 = 121/ (A.4)

We define Sy as the distance travelled by the test particle while accumulating
90° deflection. We then obtain:

_— _ 1 187
%a = V%4 = BN, vo2knA T gln (127/g) (4.5)

We assume that the Vlasov solution will become invalid for probe diameters

larger than the 90° deflection distance. We note that Sd/ZR is, in effect, a
Knudsen number for each of the four scattering processes that we are discussing.
The condition for validity of results obtained from the Vlasov equation is there-
fore:

R/N, < 97/ebn(127/g) (.6)

This relation puts an upper limit on g. This limit becomes more severe as

RP/AD increases.

In order to study the fourth scattering case, that of a test ion
being deflected by electron field particles, we make use of Eqs. (5.27) to
(5.29) in Spitzer, to obtain the following expression for the rate of slowing
down of the ion:
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. g 3J" <.2kT- <§"€ ;m; - (A.7)
v q+<q¢ £
K depends on v only through ZnA . ' Agnore this dependence to obtain the

following expression for the distane, travelled by the ion before losing mest
of its forward velocity:

S =f vdt = f Kdv = (A.8)

t = vV = v

We assume that the isn is initially moving at the mean ion the™wal speed:

1 3 ‘n

-2.m+ v02=-2-kT+ . -9)
Substituting, and setting q+2 = q_2, we obtain:

3 1

R mea ¥ o
g tn(Z= 7 )

If T, = T_, we obtain, from (A.5) and (4.10):

S 1

s . (27 mt ¥
g, “\3 = (A.11)

For a hydrogen plasma, this ratio is ©2; for an argon p. sma it is 390. There-
fore, unless the ratio T4/T. is extremely small, the ion-ion scatter g dis-
tance Sd will always be smaller than the distance Sg

in C.G.S. wits, we obtain, for the Debye length:

e m————

Npiem.) = 6.90 -2$2¥%—— (A.12)
\ N(em. )

T(°K))3

\ ¥(em.3) (A'13).

For any given R /KQ, it is row possible 1o obtain a meximum allowable value of
g from (A.6), and thence to obtain & maximum allowable number density = for any
giver T, from (A.13). Table 1 gives a set of values of Npgy. derived in this
wanner, for vaﬁues of the racio RP/AD of 2.5, 10, and 100, and values of T of
103 and 2 x 10

It should be _orne in mind that when the scattering of electrons
in a plasma is being considered, N is the total number density N, + N_, since,
as has been shown,ions and electrons contrhbute equally to electron scattering.
In this case it is also necessary to modify the definiticn of M in Eq. (A.1)
ond hence the argument of the logarithmic term in subsequent expressions. This
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is because Ap appears in the derivation of this expression as the effective pene-
tration distance of the test particle electric field; the Debye length of the plas-
ma as a whole is related to the ion and electron Debye lengths as follows:

1 1 1
= + - (a.1k)
N o2 a2

If T4 = T., the Debye length of the plasma as a whole is less
than that for ions or electrons by the factor 45; if T, << T_, the plasma
Debye length is approximately equal to that of the ions.

Finally, it should be remembered that.the criteria developed here
are useful only for a qualitative estimate of the safety of using the results
of the Vlasov solution ir any given situation. To obtain a quantitative value
of the error made by using the collisionless theory would require & solution of
the more general problem including the effects of collisions.
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APPENDIX B

Discussion of the Collisionless Boltzmann Equation

It can be shown that the Liouville equation (Ref. 11) that des-
cribes the statistical behaviour of a physical system is valid only when the
system is described in terms of position coordinates riy and momentum coordinates
pj which are canonical; that is, rj end p; satisfy Hamilton's equations:

oH : oH
g;; = I‘i &; = --ﬁi (B.l)

H is a function of the r; & p; which cen usually be identified
with the energy of tke system. The total number of position and momentum
coordinates ry and p; is egual to the number of degrees of freedom of the sys-
tem. For example, if the system consists of n interacting particles and each
of these is free to move in three dimencions, then the values of 6n coordinates
must be specified to determine completely the state of the system. In rectangu-
lar coordinates, the 3n position coordinates ri then becaome
X1> ¥1s Z1» %25 Y2 225 -+« Xns ¥ns 2z In this case p; = mvy; = mfjy and the
pi become mx;, mxp, ... mz,.

In the collisionless limit, the motion of each charged particle
becomes independent of the individual positions of sall the others and depends
only on the macroscopic overali field resulting from their collective charge
density {Sec. III). The Liouville equation that describes the motion of that
particle then becomes independent of the coordinates of all others; in fact,
it reduces to a form identical with the collisionless Boltzmann equetion (4.la
or b). This fact, namely that the collisionless Boltzmann equation is in reality
a one-particle form of the Liouville equation, is pointed out here in order to
make clear that it is subject to the same restrictions, namely that it is only
true when expressed in canonical coordinates. The Boltzmann equation is very
often derived from elementary considerations rather than as a special case of
the Liouville equation, and this restriction then does not appear explicitly.
Such derivations are usually carried out in rectangular coordinates, in which
case the positin coordinates ri, expressed in vector form, become r = (x,y,z),
and the velocity coordinates vy can be written as v = I= (vx, v ,vz). The
momentum coordinates p; canonical to rj are then expressible as E = (mvx,mw ,mvz).
It is then customary to write p = mv . If this vector relation is substituted
into the collisionless Boltzmann equation (4.la or b) the result is the form
commonly seen, for instance in Ref. 5, as follows:

%{“%%‘I +%§-§-=o (8.2)

' However, the relatic” » = mv itself is a formally incorrect
statement, since the use of vector notation implies that this relation is true
independently of its expression in a particular ccordinate system; this is not
the case if p is to fit the definition of Egs. (B.1). For example, in cylindri-
cal coordinates, where r = (r,0,z) and v = (v,, vg, v;) = (*, r0 , £), the mo-
mentum canonically conjugate to r by Eqs. (B.1) is p = (mf, mred, mt); this
expression is not equal to mv because the momentum Pg canonical to the
cogrdinate @ is the angular momentum mr2p rather than the linear momentum
mr®, This warning is mentioned here because the Boltzmann equation is most
often written in the form of Eq. (B.2) rather than that of Eqs. (4.1) and may
therefore be a potential source of confusion. The fact that Eq. (B.2) can give
incorrect results may be verified by substituting into Eqs. (4.1) and (B.2)
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the expressions for r,v and p in cylindrical coordinates, and then solving these
equations by standard methods to find the corresponding loci of constant value
of £, i.e. particle trajectories. Examination of these resulting trajectories
for the case of a central force field will indicate that those obtained from
Eq. (B.2) do not show conservation of angular momentum as required. A similar
situation holds for spherical coqordinates. This anomaly was found during

the early stages of this investigation when an attempt was made to use Eq. (B.2)
to obtain explicit trajectory equations.

A related problem is the precise definition of the distribution
function f which appears in both Eqs. (4.1) and (B.2) as well as in Sections
VII and X. Since Eq. (4.1) is expressed in terms of canonical coordinates ry
and py, the distribution function f referred to in this equation must be a
density in the space defined by these same coordinates. In other words, if N
is now the total number of particles in a 6-dimensional volume element in this
space, vhereas N has beegidefined a8 number density in physical space, then the
definition of f is f /a3rd3p = a3N/d3p. However, both of the distribution
functions given by Eqs. (7.12) and (7.13), for instance, are of the form implied
by their appearance in Eq. (7.1) and therefore are given in terms of position-
velocity rather than pos:ltio : spn.ce. In other words, f in these equa-
tions has the definition f = /d rd'v = d N/d3v This is in spite of the fact

that f appears in these equations as a function of energy E. By way of further
illustntion, the density in (E,J2) space (in spherical coordinates) i.e.
d2ll/dEdJ s 1s given by a different expr&uion nanely the integrand of Eq. (7. 5),
vhich is the quantity wf(E,J) d(v,,v,°)/d(E,d2).




APEENDIX C
Behaviour of the Iterative Solution Method -

We first examine Poisson's equation in its nondimensional form,
Egs. (9.6) or (11.3). We imagine that we have a net charge density fpet(x)
that differs from the solution of the problem by a small positive increment
over a certain range of x. Because of the negative sign in the Poisson equation,
the resulting effect will be to depress the second derivative of X by & small
increment over this range. .This increment will be proportional to 7y , the
square of ratio of probe radius to the reference Debye length. Since we have
a two-point boundary value problem involving a constraint on potential at either
end of the range of x, a rise in potential will be produced over the entire
range, with the maximum rise tending to occur near the region where the charge
increment has been imposed. If the distribution of charged particles in position
space is now calculated, and the result is compared to that for the true solu-
tion, there will be fewer ions but more electrcns in this region. The result
will be a net charge density that now differs from the true solution by a nega-
tive rather than a positive increment.

The magnitude of this increment will increase if either 7 is
increased or the range of x between end points is increased. If the process
is repeated, the increment again changes sign. The r<gult of repeating this
process is therefore a sequence of functions M,,.(x) which oscillates about the
true solution. If 7 or the range of x is aufﬁcfently large, the oscillations
will diverge and must be damped by mixing the A'th and N+ 1'th iterates at each
step.
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APPENDIX D

Integration of the Poisson Equation

From Eq. (9.6), the Poisson equation for the spherical probe is:

asx - _7 nnet
dx? P
We introduce a new radial variable s(x) which is zero at the

probe surface (x = 1) and which increases as radius increases (x decreases).
We arrange the radial dependence of s so that s is a steeply rising function
near the probe surface and a less steeply rising function farther out. This is
done in order to define a suitable computation net; points in this net will be
placed at equal increments in s. Varying the form of s(x) allows us to place
points in this net densely within the sheath region and sparsely outside it.
The specific forms of s(x) that have been used in the computations are con-
tained in the listing of Program 1 in Appendix I. We assume that dx/ds can be
" explicitly calculated everywhere. We then have:

(p.1)

ds & (dax ds\ _ _ 7 "met(s)

xas \asax )=~ By - Kols) (0.2)
9.".,2’.‘(22& L [Py &, (.3)
AT ) MR T M A T .
0
Let: |

s \

Ll(s)-% f xo(s')%:-,- ds' (D.4)
0

Integrating a second time, and noting that the bracketed quantity in Bq. (D.3)
is equal to (dx/ax),.o, we obtain:

o)+ wo) ¢ () o0+ [ree @)
‘ Y

let: .
Ke(s) = 3(0) + [Ey(s) e (0.6)
0
Then:
| X(s) « (% )w (x(s)-1) + Ky(s) (p.7)
From (D.3), we obtain:
8
go{. 2o o0
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Equations (D.7) and (D.8) are now used together with appropriate -
boundary conditions at the outer edge of the computation net, to solve for
(dx/dx)g=0- Equations (8.9), expressed in non-dimensional form in terms of x,
give in the spherical case the following boundary condition at x = xg:

a¥\ _ 2%s
(53?3_ “xp (2:9)

By setting s = sg in (D.7) and (D.8), and substituting the re-
sulting two equations in (D 9), we obtain:

ax 2K,(sp) - xgKy ( SB)(%)B

= = (D.10)
s=0 2 - xp

This value of (dx/dx)g=0 may now be substituted into (D.7) and
(D.8) to compute X , dX/dx, and thereby dX/ds, as functions of s. The quantities
X and di/ds are used in the subsequent calculation of charge densities as out-
lined in Appendix E.

In solving the boundary-value problem concerned with zero-tempera-
ture repelled particles (Sec. XII), the outer boundary of the computation net
becomes the sheath edge, so that the required boundary condition becomes
%B = 0, Setting the left side of Eq. (D.7) equal to zero gives:

@), - %5 o

In this case we choose a function c(x) which places points den-
sely near the sheath edge and less densely closer to the probe. The function
actually used is indicated inthe listing of Program 2 in Appendix I.

A similar procedure can be derived in the cylindrical case.
Here the Poisson equation (11.3) becomes

(x‘-’l) . "‘“""(8) = K (s) (p.12)

Proceeding as before, we obtain:

1 ax [° oy X'
& 3 & (”‘)a_o*; a fo folt) Gor 4 (013)
We define:
X, (s) = —--f Ko(s') & as (D.14)




We integrate again, and use the definition of Ko(s) in Eq. (D.6)

to obtain:
o) = () g0 x(9) v x() (5.15)
From (D.13), we obtain:
d
& () = <E§ 5=0 (s) (D.16)
™ x(s) L(s)

Using (8.9b), we obtain:
ax) _ XB
(ﬁ%)s ~ xp (D.17)

We proceed as in the spherical case and set s = s in (D.15) and
(D.16), then substitute in (D.1l7) to obtain:

_ Ko(sp) - xp Ky ( )/(%*),,
& T, -

If we again use the boundary condition xg = O, we obtain:

a\ _ _ ke (sp)

The numerical integrations required in calculations of the fun-
ctions K;(s) and K2(s) involve integrands that are specified at n discrete
values of s separated by equal intervals As. It is necessary to compute
values of these functions corresponding to the same n values of s. If we let
vy = y(si) represent the given integrand and Y; = Y(sy) represent the required
result for i = 1, 2, ... n, we then have:

84
LR R f y(s) ds (D.20)
8.1

This integration process is approximated as follows: we pass
a parabolic arc through the points y;, ¥, and Y3 to find Yo - Y;; & cubic
arc through y; o to yy4) to find Yy - Yy_y for {”= 3,4,...n-1, and another
parabolic arc tﬁrough Yp.2s Yp.1» anl y, to find Y, - Y, ;. The resulting
formulae are:

Y, o= Y5y + (13 (yied * vq) - ¥55 - ¥y,,) O8/24; 123,4,...0-1

Yp = Yp-1 * (5Vn* 8¥pn.1 - ¥n.2) 88/12 (p.21)
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If we set Y1 = O and sum expressions (D.21), we obtain the
following approximation formulae for Y,, for various values of n:

Y3 = (y; + 4yp + y3) 2s/3

Yy = (3y1 + 9yp + 9y3 + 3y,) As/8
Ys = (9yy + 28yp + 22y5 + 28y, + 9y.) As/k
> 3 4 > (D.22)
Yo = (9y1 + 28y, + 23y + 23y + 28y + 9yg) Os/2h
Y, = (9y; + 28y, + 23y5 + 24(yy, *+ ¥5 + ... ¥po3)

+

23y,.0 * 28yn.l + 9y,) 4s/2h; n>6

These formulae have been used in evaluating the integrals (E.33),
(E.36), (E.88), and (E.91). The major advantage of these expressions, in com-
parison with many other numerical integration formulae, is that they weigh
equally all of the interior points yp....y,_ 3¢ This feature is of particular
importance in evaluating (E.33) and (E.88). “These functions are evaluated
successively, many times during each iteration of the computing program,for
values of s differing by As, and with integrands y(s,s') that are integrated
over s' and change in a continuous manner from each value of s to the next.
In many cases y(s,s') is a rapidly varying function of s and s',and it was
found that application of a standard numerical procedure having unequal
weighting factors tended to cause unacceptable scatter in calculations of
charge densities.

Another advantage of expressions (D.22) is that they do not
restrict the integer n to multiples of other integers.




APFENDIX E

Expressions for Charge Density and Collected Current in the Case
of a Maxwellian Velocity Distribution

We substitute expressions (9.11) to (9.14) and (12.2) for 2,(B),
together with expressions (9.2) and (11.5) for the Maxwellian velocity distri-
bution, into the charge density expressions (9.5) and (11.2) and the current
collection expressions (9.9) and (11.4). By referring to Figs. 3, 5, 6, 8 and
10, we then define a set of integrals in terms of which charge density and
collected current may be calculated.

For the sphere, we substitute Egs. (9.13), (9.12), (12.2), (9.14)
and (9.11), in that order, together with Eq. (9.2), into Eq. (9.5), to define
the following integrals:

SROREE Y R O O (E.1)

where A 2 X. We note that the value of this integral depends on X as well as on
A although for conciseness in later expressions this dependence on X is not
indicated explicitly. The subscript s is defined as referring to the spherical
probe; the subscript ¢ will be used to refer to the cylindrical probe. It is
important to note here that the subscript s does not correspond in any way

with the radial net coordinate s, which has been used in Appendix D and is

used again in this Appendix, beginning with Eq. (E.28).

"2,3(” = - 7117- 7[ a P {B -x-x2(p- Xp)}é (E.2)
where:
A2 x
and:
co XX (E.3)
1-x2

x is the value of B at which the lines 8 = xp +Dandp =212 + ix2
intersect (Fig. 1b)

n3’s(A) = - 7,1;-jABB B e’ { B-x-B -;’5; }5 (E.b)

vhere: o< A < Bp; Bp is the value of B at which the lines B = X + 2 and
B = Qxp° mt.ersect (point. B in Fig. 10a); we obtain:

X
B = - S ————————— (3-5)
B Z/e? -1

El
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Finally:

We also substitute Eqs. (9.12), (12.2) and (9.14)intoF3. (9.9)
to define integrals for expressing current collection:

[+ ¢]
1,6 = [ e® (6 - %) (E.7)
A .
where:
Az O
iz’s(A, =f ag eP —%— (8.8)
' 0 Xg
where
0<A< aB
SRCEARNN “ e a(e) (*.9)
1

I

For the cylinder, substitution of Egs. (9.13), (9.12), (12 2),
(9.14) and (9.11), respectiveiy, together with Eq. (11.5), into Eg. (11.2),

allows us to define the following imtegrals for the expression of (_jarge den-
sity:

"1070 e 2 L (E.10)
15 C(A) = %f apg e arc sin {f_(_ﬁ.;_":P.).}a
? A B - X
where, once again, we require A>#
1 FB ) [ xf s B .
n 3,c(A) = = f 8 e aye sin *L -}-{-];? -é—-_—x {E.11)
A - "
where, once again, we require 0 < A < BB. )
2 , (a) x2 ) %
1 ~ G
i h’c(al,BQ) = ;f ag e." & Sin { ‘3.12)

Py
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"5,c(A) = Jr e 3 (E.13)

We also substitute Eqs. (9.12), (12.2) and (9.14), together
with Eq. (11.5), into Eq. (11.k) to define integrals with which to express the
current collection for the cylincder. We obtain:

now=5[ we? -xt C(Eab)
? A
wheres A>0
i, () = S;r[\dae"s (;%—)é (E.15)
where: 0< A< BB
2
iy o(B:8,) = 7~ [ a8 ™ (ag(8) )2 (E.16)
1

We define 7, and ip as representing either 3, ¢ and ip g for the
sphere or N ¢ and ip o for the cylinder. We are then able to express the
charge densi{y and collected current for either species of particle in terms
of nn and ip. ‘

For example, if the (f,B8) plane has the appearance shown in Fig.
3a, we have:

=
1]

2 'qs(O) - "2(0) - 711(0) ' (E.17)

i 11(0)
This situation corresponds to that of Fig. 8, case 5, in the

eventthat the portions of the locus of extrema shown dotted in this diagram are
not present. '

If the (9,B) plane has the appearance shown in Fig. 3b, we then
have:

n=2n5(x) - 2 my(x) + () - mply)

(E.18)

i il(xp)‘

This situation corresponds to that of Fig. 8, case 6, with the
same qualification as above.

E3




If the (2,8) plane has the appearance of Fig. 5b, we have:

=
"

(E.19)
i= 13(0,BH) +1,(8y)

If the (0Q,8) plane has the appearance of Fig. 10b, we obtain:

o3
L}

2 ng(Bg) + n3(0) + ng(By) - n,(BesBy) - my(By) - my(0)
(E.20)
1=1,(8) + 15(BysBy) + 1, (By)

Numerous other combinations of these functions are produced by
the various forms of locus of extrema shown in Fig. 8.

We now carry out the integrations indicated in the expressions
for L and 1.

We define the function g(x) in terms of the well-known error
integral erf(x) by the following equation:

2
g0 = T & (1. ere(x) ) (E.21)
where: 2
2 -t
erf(x) = U%‘[# e dt
0o

For large x, the following asymptotic expansion (Ref. 16) is useful:

-x2

e 1, 13 135,
n L nE t e (@) )

We now integrate (E.1) to obtain:

Ny (&) = - 5;—( JA-x +e(Va- X)> (E.23)

If A =X , we note that g(0) = NT/2 to obtain:

erf(x) =~ 1 (E.22)

n,s) = (E.24)

Integrating (E.2), we obtain:

-A
Ny, A) = - \J1- 28 S (Yax +e({K-x)) (E.25)

EY4




In order to integrate (E.4), we note that it can be transformed to:
g :
2,2 .1\ B .
n3,s(A)=-<i‘-E5$,——3)f ®e® b, - B (E.26)
A

Integrating by parts, we obtain:
{B -A

Ny 8) = - (fi‘%_{ >§{ J-BB_-_A_; e~A -e'BBfB et? dt} (E.27)*'
0

Equation (E.6) must be integrated numerically, since 0.(B) is
generated in tabular form by the numerical solution scheme. In order gb carry
out this integration, we make use of the radial variable s defined in Appendix
D, and we note that the functional dependence Q@ = nG(B) can be expressed para-
metrica.lly as Q.= 05(s), B = Az(s). Equation (E.6) then becomes:

ﬂh’s(ﬁl,ﬁz) =
s'=82 , _B (S'
- v_llr— f ds' Sﬁ_gi's_) e ¢ iBG(s ) - X(s) - 9g(s') x2(s) } (E.28)
s'=s1
Making use of Eq. (9.8b), we define:

. dBG(S') ' 2 (]
e - B0 (1m 2 ) E.29
Substituting Eq. (9.6), we obtain:
7, .(8") :
%(s') = % %XE-"L 2n:?.3 gi' (E.30)
We also define:
egls’) = a(sr) e7Pa(s") (E.31)
¥y(s,8') = { Ba(s') = x(s) - a(s") xz(s)}* (E.32)
(E.28) becomes:
8'=82
m,o(Ble) Bs) ) = - F= [ ast egle) Yylass0) (=.33)
s'=sl

This integral is now in & form suitable for numerical evaluation;
the integrand has been reduced to a function of potential and its first two
radial derivatives, enabling the integration to be carried out over the compu-
tation net in position space. The form of this integral means that the value
of the density contribution 'lu at the position s depends on the form of the
potential at every value of the radial coordinate s' between the locations 8,
and s,, and not on conditions at s only.

ES




This means that the overall problem is "global" rather than
"local" in nature and cannot be reduced to an ordinary differential equation
as long as the distribution function (which is contained in the expression for
€5) is poly-energetic in form. This fact substantiates the statement made to
this effect in Sec. V.

Equations (E.7) and (E.8) may be integrated to give:

1) = (-x e 1) e (E.34)
1, 4(8) = S5 (1- (a+1) e (£.35)

(E.9) may be integrated in the same manner as (E.6) to yield:
8'=82
1y o(B(s)Bls) ) = [ s egls) ag(st) (E.36)

1=
8 —Sl

Equations (E.23) to (E.36) define all of the functions necessary
to compute n and i for a spherical probe. As examples of their use, we substite-
ute them in (E.17) and (E.18) to obtain expressions for n and i for the attract-
ed and repelled species, respectively, in the cases where the. locus of extrema
does not enter the first quadrant of the (Q,B) plane. We note once again that
this condition is satisfied for the repelled species if the potential is a
monotonically decreasing function of radius; this is usually the case. It is
satisfied for the attracted species if the decay of potential with radius is
nowhere steeper than that for an inverse square potential.

In the spherical case, the unshielded potential varies as the
inverse of radius, whereas the asymptotic form of the shielded potential is an
inverse square of radius (Sec. XIII). In the cylindrical case, the unshielded
potential is logarithmic in radius, and the asymptotic shielded potential
varies inversely with radius. In both cases, the effect of space charge on
potential will be small out to a distance of many probe radii in the limit
Rp/ku<< 1. When this effect is present, it tends to steepen the potential
gradient; for sufficiently large Rp/AD, there will exist regions steeper than
an inverse square, and expressions (E.17) will not give correct values fdr % and
i. It is not clear a priori whether these expressions are correct for a finite
range of Ry/Ap or only in the limit as R,/Ap = 0. The former situation appeurs
more likely in the cylindrical case than the spherical, because in the cylindri-
cal case the potential tends to have a shallower form than for the sphere., The
computed results (Sections XV and XVI) verify this expectation .

We first use (E.18a) to calculate n for a repelling probe
(xp > 0). Substituting (E.23), (E.24) and (E.25), we obtain:

X -X
et S (WG s 0 ) IR L2 (T s ) )

(E.37)




From(E.3) we note that:

(x,, - k) (1 - x2) = X, - X (E.38)

(E.37) becomes:
=X

n=e'x-§.’r—p{e({1-p-_?)- 41°12 B(J%%)} (E.39)

If X, becomes large, this expression reduces to the familiar
"Boltzmann factor" or thermodynamic equilibrium distribution. At the probe
surface, x -1 and X -.Xp. We obtain:

p 5 (E.LO)

This expression corresponds to a distribution function which is
zero for outward-moving particles and Maxwellian for inward-moving particles,
as expected for the repelled species at the probe surface. We note that at
sufficiently small probe potentials, the difference between this result and the
Boltzmann factor becomes too large to be ignored. Lam (Ref. 7) has used an
expression of the same form as (E.4O) to derive a quasi-neutral solution which
gives an approximate relation between current and probe potential when the latter
is small enough that no sheath fcrms near the probe.

Far from the probe, x -0 and we again obtain from (E.39) the

Boltzmann factor as a limit. In the field-free case, = X = 0, ve obtain the
geometrical depletion factor due solely to the s0lid angle subtended by the

probe at any radius:
n = Lt ﬁa = x? (B.41)

We next substitute (E.23) and (B.25) into (E.17a) to obtain the

shallow-potential form of 7 for an attracting probe (lp < O)as follows:
2

1o B {0 R { D ) e
The requirement « < O implies X/Xp > x°. This condition is
satisfied in the shallow-potential case.

If ve again set X, = X = 0, we recover the form (B.41).

We now substitute Bq. (B.34) into Bqgs. (E.1Tv) and (3.18b) to
obtain the currents collected by the probe when current collection is ordital-
motion-limited (Sec. VIII). Substituting, we obtain the well-known results:




P- (E.43)

The cases of most interest and difficulty are those which de-
part from the above forms of 7 and 1, and for which 7 and i must be calculated
by one of a variety of expressions of which (E.19) is an example.

Functions analogous to those in Eqs. (E.23) to (E.36) are now
developed for the cylindrical probe. In general, these expressions are con-
siderably more complicated than those for the sphere.

We integrate Eq. (E.10) by parts to obtain:

O I SR W
o, - - s v { Z5 i a,Af (B-x) (B-x ) (p-r)?

(E.4b)

It is necessary to distinguish two cases: A is greater than
either X_ or x , which usually occurs in the calculation of n for attracted
particles, and A = xp, which occurs for repelled particles.

We observe that the integrand in (E.4l4) has branch points at
X, and x on the B axis, and a simple pole at X , which always lies between
xg and x . For the repelling probe, we usually have k< xg. For the attracting
probe, this situation may be reversed. Since the range or integration never
includes any of the interval between the two branch points, the pole B = X
is always outside the range of integration.

We replace the variable ot integration B in (B.4l4) by a new
coordinate which is so defined that the two branch points are located
symeetrically about the origin. In order to do this, we define:

T=(x ¢+ Xp)/2
E=p-1
uo=max (x,2)) - v (B.45)
@=X -7
B=A-17
We define the integral in Bq. (E.Uk) as Y and substitute (E.45) to obtain:

. at
ﬂl(B,w ) =g T ¢ '
{ (¢ - 0) ( t2- u)} (B.46)

vberezngumd-u<0<u;B-ucomapmdstothositutionA-lp.




In the situation B > u we may expand the denominator of Eq.
(E.46) as follows: o

EIRIER) Z ) 0
(-5 ) @)
(-9- ) {1 )z A (8.49)

(E.48)

where:
; k>0
Substituting: ®
m@m - o) 1g () (£.50)
m=2
vhere:
T, =1
T =0
Tox" By
" Ty TR0
and: . -t
r(®) = R f '—.g%‘-— (E.51)
B

By integrating Eq. (B.51) by parts, we derive the following
recursion formula for m > 1:

7 (8 ;11—( ";i':i‘ - 7,,(8) ) (.52)

!'1(3)0 is a well-known transcendental function called the
exponential integral of B, or Ei(B) (Ref. 16). From this reference, we have,
for B< 1:




B . B B
Fl(B) = e ("n B - CE +B- 2.2: + 3.3! - I‘.I’: ccoo) (E053)

where Cg is Buler's constant; Cg = 0.57721566.... In the range 1 < x < « ,Ei(B)
may be numerically approximated by a formula given in Ref. 17, page 190.

The power series (E.48) fails to converge for & = p; therefore,
the power series representation of the denominator in ?E.%) is not uniformly
convergent in any interval that includes pu, and the term-by-term integration
derived above cannot be used to evaluate (E.U6) if B = u. In fact, the series
cannot be used to compute this integral for values of B within a certain neigh-
bourhood of u becuase convergence is too slow to be useful.

We therefore derive a procedure for integrating the integrand of
(E.46) from p to a larger finite value. We may then use this procedure to
evaluate (E.U6) as follows:

B (B,) = Hy(w,B_) - H (u,B) + H (B ) (B.54)

B, is the smallest value of B for which the representation (E.50)
converges with adequate speed. If B > By we evaluate I,(B,») using (E.50) only.

In order to derive this procedure, we let § = u cosh z to obtain,

K hz-6)
Hy(u,B) = e'(ﬁe)f < dz (E.55)
5 _ |

from (E.46):

B cosh 2 - 0

Kacosh'l(f)aln(g . J%;j)

Expanding the exponential in series and noting that v + @ = x , we obtain:

H1(u,8) . et {fx r:-i;im-fxdz +i ﬁ%‘%;;ij&(u cosh 2-8)" dz}
0 0 n=l ¢}

(B.56)
- ,-1{ [';3?7 arc tm(ﬁ-‘flﬂ) - arc m(i—:&—%] -K+3 [‘2* (-3) - exJ

C ()™ a o0 T e\ ol
LB G (e ]} e
£ z

where:

E10




where:

L = eK
2
0
¢=1- =
7]
K
= n
Rn-fcoshzdz
0

By integrating by parts, we derive the following recursion
formula for Rp:

R, =% (cosh® 3K sinh K + (n-1) R""9) (E.58)

For sufficiently large values of u, it becomes impossible to find
a value of B, such that the series in Eqs. (E.50) and (E.57) both converge
sufficiently fast to be of use in numerical computation of Hl(B,o). In such
cases, & numerical quadrature routine is used.

In this case, Eq. (E.46) is transformed by use of the relation
¢= - fnw to remove the infinite upper limit of integration. We obtain:

e"‘B

Hy (Bym) = e fo (_!w-e)( (z:)a . a% (E.59)

In the case A = X,, the first term on the right side of (E.U4)
vanishes; from (E.55), we obtain:

-X f“ e-u(coah z-1 + 1/\)

Hy(n,w) = =— dz
a(u.) H ° (cosh z-1 + 1/A)
-X
= "e'r Pk M) . (E.60)

where: A = uf(u -0); we note that if either u or A is large, the main contribu-
tion to the integral is for small z. Since - u < 8 < 4, we alvays have A > 1/2.

Differentiating F, we obtain:

%’ - -e“(l-l/k)f e‘HCOShl ds = .eu(l-l/)s) xo(“) (3.61)
0

Ko(u) is the zero-order modified Bessel function of the second
kind. Por sufficiently large values of u, the folloving asymptotic expansion is
useful (Ref. 18):




= Let §y . 22,2832 B3RP
SORN {1 B 2:(E02 3:(8u)3 J (562
T C
= Eeuz “ng_
P(=,\) = 0
o P(p’x) = - f %P' dp' - f eH'(l-l/K) Ko(p") d#'
H u
= ﬁ ch fm e_.%k‘_' (E.63)
2 - ! (u')n*
Let: . -uYA,
- e T _ -u/A
- { s (2.64)

Then:

oh:!

]

n

o
> |
N

! 1 . R_
R, = -3 [ -;;—:—;— N ] (E.65)

The asymptotic series Cn R, fails to give a result if either
H or A is too small; however, the mirimal value A = 1/2 is sufficiently large
to obtain a result.

Equations (E.45) to (B.55) define the method for numerical
evaluation of Eq. (E.4k).

The evaluation of 173 .(A) is carried out in a similar manner.
We integrate Eq. (E.1l) by parts, ogﬁerving that the bracketed quantity in this
equation is equal to unity at the upper limit of integration B8p. We obtain

)

oA 2 a e-BB 1 X e’ o
"3,c(‘) = == arc sin {‘9‘-2 A-% } e T xp2 j; (a-x)Bb(BB-Byf
("7

(E.66)
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We define the integral in Eq. (E.66) as Hpo(A). Once again, we
make a change of variables in this integral, as follows:

_%
H=32
Ps
e=f-3 (E.67)
9 =-X+ ?
Substituting, we obtain:
N LT
(A) = e f (£.68)
2 A (ER)(Pgd)2

We observe that the integrand has branch points at £ = ¢ 4 and a
simple pole at &€ = - 6 , where 6 > u. Once again, the pole is always outside
the range of integration.

As before, it is necessary to distinguish two cases: 0 < A < Bp,
and A = O. We expand the integrand of Eq. (E.68) as follows:

et (tve)! - % Z %%liz

i=0 j=0
[« ]
(E.69)
'3
- 1) By
=0
where: k
1l
B )
k o k =14
120 ile
Substituting, we obtain:
= u k
k=0 A"“ (" b g
We set ¢ = u sin z to obtain:
l’ .
= -—- Z( l)k f sinkz dz (E.71)
arc si-n(— - 1)
El3




In the case A = 0, we obtain: - ..
i SO
: ‘.
S = l sinfz dz = m3; k=0 - X{L )
"2 = 0 ; k odd S
- i
- lo 050 LR ok - J- . - . —
- T [2. oo k J, h eve: - .

For 0 < A < Bg, we may integrate Eq. (E.72) by parts to der “ve the ¥ i‘\

formula: . - -
it P : _—
Sk = o 1l - + k -1 s " N ‘1-'
* k k-2 = S .
’ -
where ¢ = é -1 . ‘\“\: My, =, . e

=

If y is large or nearly equal to 8 , the series lu mg. ﬁo“h\" =
fails to converge rapidly enough ts be useful for numerical comput ™%
A > 0, numerical quadrature must then be used tc evaluaste Eq. (E ).
A = 0, we substitute £ = u cos z inEq. (E.68) and re-define P(u,)) e P

H2(O) =

/A f’r oH(1/. + 1 - cos Z)dz i

1 Hu

- 4 - "
0 % l-cos 2z (E. &)
where: N = p/(0-p); once again, we note thg the integrand gives most of 1ts
contribution for small z if either p or A bgomes large. In this case, we
have 0 < p < ® and 0 < A < o . Differentiaty;g P(u,A) with respect to |, ac
before, we obtain:

B

i o
oP -u(1/N +1 -u(1/\ ‘
F“ = -e i ( / )f gHeos ZdZ = -e u( / H@{‘O(“) (E-Tj,
0

I,(k) is the zero-order Bessel function of 4maginary argument
(kef. 18, pages 162-163). This function has the followingssymptotic expan-
sion for large u:

M 2 2
I (w) i [1+ %—+ 153 ot 153552 t-..]
° Booau(Bw)® 3 (8u)3

(E.76)

N e“ Z -Cll. ) )
- n
\I em T,

E1l

Since P(o,A) = O we have:




oc : >

"
/N m Z n> \
=/ e Bt — (E.77)
f 2 \/L oA
K n
. ) ) Iy
“ =~ ip(0) = E— "-I chf e w1 IZ ¢, Rn (E.78)
‘—.,.\? - H g 2 W' n-l% MU 2
- n Rk n
«  hmere By 1s defined in Eq. (E.64).

Here we must allow not only for the case of small p but also
Yor the /“1se of small A . In either situation the summation in Eq. (E.78) fails
tc produca a result because of the way in which p and A enter into the recursion
Caurmiia (4",.65) .

We first study the case where A is small compared to unity, but
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If we take the first term in Eq. (E.78), we obtain:

Hp(0) = 2 \F-;’; g<\f§_') (E.79)

In the case of small A , we observe that the integrand in Egq.
(E.74) dependsmostly on the numerator in the region in which it gives most of
its ccentribution to the integral, namely the region of small z. In other words,
the width of the peak in the integrand depends primarily on p; the influence
of the denominator is small in comparison. We approximate the denominator,
for A << 1, as follows: ‘

1 A N Aeh(cos z-1) (E.80)

% +1-cosz 1+ M1~ cosz) -

Substituting in Eq. (E.74), we obtain:

e M- T (L¥\)cos z Ae A
HQ(O)::—--T f e dz = = T Io(p.«n?\) (E.81)

O.
A 7 12 123°
-2 s [1+ TN T )2...]

For large values of & , g(8)=1/2 ; for small A and large u,
Egs. (E.79) and (E.81) can be shown to approach the same limit. We combine
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them to obtain the following approximation formula:

LI 2

0= @(ﬁ) [ o B%EW ' 21%2(;%))2 ] (E'é;)

If MNis large and u is small, the Taylor expansion of I (u) can
be substituted into Eq. (E.77). This expansion is:

Io(u)=1+‘<%>2+ %;L i‘i@%— Z

From Eq. (E.77) we have:

() = { l " { g { TR A ) e

Evaluating the first integral term-by-term, we have:

(E.83)

Ie-u'(l/k +1) IO(H')- au' = e-AWZ Cn Ry (E.85)
n
where ¢
Ry = A¥ Q = eAwf" -ht gk ag
o]
A=1+1/A
AW
e «]
Ro= =3
kR _, - wk
-1
Rk = A

W is an experimentally obtained value of p chosen such that the
series representations (E.77) and (E.85) both converge rapidly enough to be
useful. If both u and A are small, the series in Eq. (E.71) is used to compute

Ho.

Equations (E.67) to (E.85) define the method for numerical
evaluation of Eq. (E.66).

The expression for 1) ¢ in Eq. (E. 12) can be transformed :I.nto
an integration cver radius in the samé manner as the expression for ..
Eqs. (E.6). This time, we substitute the cylindrical Poisson equation’ (11 3)
into Eq. (E.29) to obtain:




oo ax 7']net( ") ax’
aG(S ) - dS' + 2 ‘3 dsl (E'86)
X "

We again define €3(s') as in Eq. (E.31); we define ¥g(s,s') as follows:

. s')x2(s d .
TPG(s,s ) = arc tan {ae(gc-};-xzs)fa();(s')ﬁs)} (E.87)
Substituting in Eq. (E.12), we obtain:
§'=sp
h o (Be),80s) ) =2 [ ast egle) yylsst) (£.88)
s'=sl

The current collection expressions (E.l4) and (E.15) may be inte-
grated by parts to obtain:

i) () - 'A{ {_-_x_'+ g<JT._xp‘>} (E.89)
lgsc(A);é[l-v"gr e-A<~/1\+g<«/A> > ] | (E.90)

Finally, Eq. (E.16) becomes:

s'=s2

15,0800, 8 ) = F [ as egle) Vagle) (8.92)

s'=sl

Equations (E.44) to (E.91) define all of the expressions necessary
Tor computing n and i for a cylindrical probe. As in the spherical case, some
special cases are of importance. We first calculate n for a repelling probe,
once again under the assumption of a monotonic potential. Substituting Egs.
(E.10) and (E.13) into Eq. (E.18a), we obtain:

1= e-x-% f B eP arc sin{ (B -_*p) } (E.92)

Xp

For large Xp we again recover the Boltzmann factor; at the probe
surface, X 2 Xp, x =1, and we again obtain Eq. (E.40). In the field-free case,
Xp = X = 0, we obtain, for the geometrical depletion factor:

n=1- %r arc sin x (E.93)




As before, we may also obtain this re

sult by using the expression for n for
attracted particles.

Using Eqs. (E.17b) and (E.18b) together with Eq . (E.89), we ob-
tain, for the orbital-motion-limited currents:

- (e (1)

1=e¢ P ;xp_>_0

(E.9%4)

E18




APPENDIX F

Current Collected by a Probe of Ll.r‘e Radius When Regelled Particles -
Are at Zero Temperature and Attracted Particles are Maxwellian

We define a radial coaordinate x, measured inward from the sheath
edge, and two transverse coordinates y and z. In the planar approximetion,
Poisson's equation reduces to:

§2=-§ . (F.1)

At x = 0, ¢ = 0 and d&¢/dx = 0. At the probe surface, ¢ < 0.
The distribution function at the sheath edge is a half-Maxwellian consisting
only of particles moving into the sheath. Constants of the motion are E sVys
and v,.

2)

E = Zegp(x) +gvx2 +§ (vy2 +v,

k4R (F.2)

E, is the energy associated with transverse motion. The distri-
bution function 1is:

() A

f= ;3 v.>0
f=0 H v: <0 (r-3)
l: L f f_ dv, dv dv, = [ E I: x dB c!.vy av,
(r.4)
Vx T J% (Ex - Ze¢(x)> H ;;3 = Im (F.5)

o) i

f(ma) ) ahrf {a_x' (F.6)

x Ze¢(x)
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. The quantities P and x are as defined in See. IX; g is as defined in Appendix E.

Wenotethltpazaanddeﬁnessx/NDa.ndy=- X to obtain,
from Eqs. (F.1) and (P.6):

s

2
ﬁ;% = n(y) = ml- e(vy) (F.7)

Since y and dy/ds are both zero at s = O, it can be shown that
Eq. (F.7) has the solution:
y ' .
S P

[ n(y")ey”
0

We define Gl(y') as the square of the denominator in the inte-
grand. Substituting into Bq. (F.8), we obtain:

y'
o,(y") = = f s(vy") ay"
0

= f ey” (1 - erf ") ay"

0

-2y - (E-5)} (r.9)

Examination of the form of g shows that Eq. (F.9) is of order
y'. When the square root of this expression is substituted into the denominator
of (F.8), a singularity occurs in the integrand at y' = 0, We may glmmte
this singularity by defining 03(y') = y' oo(y') and setting y' = 2. We then
obtain:
vy

.| =N .2 de 7.10)

We may obtain a power series expansion for g(t) s follows:

o) = F o earry)

¢ .
= "zj e‘a -o‘ef e'tz dt (r.11)
0
= et n(e)

re




The second term, h({) may be written as a Taylor series:

- (
h(¢) = z _h_mgglﬂ (F.12)
m=0

Repeated differentiation of h($&) gives:

(0*) _ on(B) 4 pp(n-1)y
n(®*1)(0) = 2nn(m-1)
NE TR (F.13)

h(2n+1)(o) - 220,

Substituting in Eq. (F.12) gives:

h(g)=g+§ g3+11‘—5g5 ,,“___z _§2nilﬁan
nﬂ 103050 . o(én.ﬂ(en"l)

[}
an+l
= z g n Qn
n=0
N g2
For large ¢,h(¢) == € ; the difference between these two

‘quantities becomes small compared with their magnitudes, and Bq . (F.11) cannot
be used to give numerical results because of round-off errors.

(F.14)

We therefore use the following form to compute s(y):
W y '
s =2 f dz . - AN (r.15)

0 ‘02(22) v, { oy

y) is an experimentally obtained value of y for which neither
Eq. (P.9) nor (F.11) suffers from round-off error. From the definition of L
we obtain the following series form:

- a.(2°) = _2n-2 =
02(!2) = -—]-'—;3— = l-a-!-— - '%- Zl zan'z % (l'.16)
n=] n=

Equations (F.8) to (F.16) define the numerical solution of Eq .
(F.7). The solution gives the number of attracted-cpecies Debye lengths s be-
tween the probe surface and the sheath edge as a function of probe potential
in the planar-sheath approximation. A program that has been used to compute s
by means of the above expressions appears in Appendix I (Program 3). MNumerical
values of s for various lp appear in the output from this program which 1is
shown in Appendix J.
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Since in the planar-sheath approximation, all particles entering
the sheath are collected, the increase in collected current as X, becomes
larger depends only on the increase in sheath area. For the sphere, the area

of the sheath edge varies as the square of its radius; for the cylinder, it
varies directly as radius.

. The collected current for the sphere is therefore given by the
following expression:

S SN, LY .
1(xp) = T (1+ R ) (F.17)
For the cylinder: X
1(rp) =1+ l”%-ﬂ)— (F.18)

p

In cases where Ap is not small compared to R , the planar
approximation will fail to give correct values for the colletted current for
three reasons. First, the planar form (F.1) of the Poisson equation will fail
to closely approximate the spherical or cylindrical forms;. Second, the orbital-
motion-limited current will decrease below the values given by (F.17) and (F.18)
in terms of sheath edge radius because some of the attracted particles will be
able to enter the sheath and orbit out of it again without beirg collected by
the probe. Finally, the orbital-motion-limited current itself will over-estimate
the current because a certain class of particles entering the sheath will orbit
out of it because of barriers created by the potential well itself.




APFENDIX G

Power Series Solution of the Allen, Boyd and Reynolds Equation

Numerical solution of the Allen, Boyd and Reynolds equation
(Ref. 6) has been carried out here for reasons which are discussed im Sec.XIII.
This differential equation expresses the dependence of potential on radius in
the case of a spherical probe at large ion-attracting potential in the limit of
zero ion temperature. The solution is carried out according to the method
suggested in Ref. 5.

Combining Eqs. (13.12), (13.13) and (13.14), we obtain the Allen,
Boyd, and Reynolds Equation:

1 4 (2 & —d X

1
—e | = -2
62 at as Nr §2I’_-"‘-

x For convenience, we define new variables s = 1/¢ , y = X_,
A =1 /a/r , and obtain:

- (G.1)

2 2
o g—% . a— (6.2)
. o Wy
The boundary conditions at infinite radius become:
ﬁ
‘ y= % = Q )
>at x =0 (G.3)

2
9—-% finite
dx
p
The condition that d2y/dx® remaips finite at x = O implies that

the right-hand side of (G.2) must be of order x*. As y-0, ¢*¥ =1 and there-
fore Ax2/Ny - 1.

Let: yaAaxl‘(l ty'); y'=» 0as x -0
o (G.4)
L = n
where: y Z a x
n=]
[ )
Therefore: ] _
y = X bnxn (G.5)
n=l
where: b = b2 = b? =0
b‘. = A2
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Substituting in the left side of Eq. (G.2), we obtain:

o :—i% = Z by (k-2)(k-3) xk (6.6)
k=6
Also:
s"; = (1+y)-t
=1 +Z ci(y')i (6.7)
i=1
where:
ci - ( -l)i 1.

Substituting for y' in Eq. (G.7):

- o« [ ] i
i) w () yd)
=1+ c a, X
‘_y-‘ i=1 ' =l ! (6.8)
on
=1 + ek xk
k=1
vhere:
+ (3:+23§o *...+hJ, ~k) i 1?.23
e = C18 ey 6(J; 2.)2 Jh" 31332:. Jh ‘1 a
{22 h=k-i+l
. (G.9)
"0 N %
and: 8(m) = 1 for m = 0; 65(m) = O for m § O.
Also: o ) {
-y _ 3
e -1+Zdi(z be )
i=] =1 (G.10)
=] ¢+ Z fk xk
k=1
where: i
-l
4 =3




and f, is given by an expression identical in form to Eq. (G.9).

Equating coefficients of like powers in Eq. (G.2), we obtain:

(G.11)
ey = I *+ bp_o (k-2)(k-3); k>6

Since Eq. (G.2) is invariant upon change of sign of x, it follows
that a, and b, must vanish for all odd values of n.

For k = 2, we obtain, from Eq.'(G.11):

¢y ap =d) by +dy )% < ¢, 812 =0 (G.12)
Therefor: a, and by both vanish for k < 4, and Eq. (G.9) reduces
to: .
, & it Jy dg Iy
ex = ciz b(h;ju + 6j6 + oel.t h;]h-k) ( Jm ) 8), 8¢ ---8y
i=2 h=k-4i+h

(6.13)

We therefore obtain from Eqs. (G.5) and (G.11) a set of recursive
relations for defining any b, in terms of b,...b, , as follows:
. a2
by = A gy,
(G.15)

*

¢) @ = d) by *+ by p(k-2)(k-3) + £, - ey

Equations (G.4) to (G.15) define the power series expansion re-
quired to begin the numerical integration of (G.2), according to the method
suggested in Ref. 5; the Runge-Kutta numerical integration procedure is used to
complete the integration.




ARZENDIX H

Operation cf Computer Programs

Programs 1 and 2, both of which are listed in Appendix I along
with two smaller programs, constitute tested methods for carrying out the "com-
putation involved in this research for the general case and for the case of
zero-temperature repelled particles, respectively. Either of these programs
produces one result, corresponding to one given value of each of the input
quantities ep /kT_, T+/T_, end Rp/Ap_, (where we have again assumed Z,=1,

Z =-1) in an &verage time of about two minutes on the IBM 7094 computer
(depending on the values of these parameters), to a relative accuracy in all
computed quantities of about 0.002 or better. Most of the results not involv-
ing extrewe values of the input parameters have relativeaccuracies better
than 0.001.

For program 1, these accuracies have been checked by running
representative cases (a case consisting of one set of values of the three
quantities mentioned above), each with several combinations of computation
net spacing As and outer boundary position RB/RD, in order to find the inner-
most Looundary position and coarsest net consistent with acceptable results.
This procedure is usually carried out at a nondimensional probe potential of
¥ 25, the largest to be used, since it has been found that the demands by the
program for large boundary radius and fine net become more severe as probe
potential increases. It is then possible to compute with confidence all cases
involving smaller probe potentials and the same values of T,/T_ and RP/AD_
using the computation net thus determined.

In general, the program becomes more demanding of a large num-
ber of points in the computation net at both very large and very small values
of R,/A\p_, and more demanding of a large number of Debye lengths between R
and Rg for very large RP/AD_. Since the rate of convergence of the »program
becomes slower as (Rp»R_JAp~ is increased, the cases of large Rp/Mp_ have
therefore been the most expensive in computation time, particularly for the
sphere. In fact, the case ep,/kT. = ¥ 25, 17, /T_ =1, R /Ap = 100 consumed
about 20 minutes of computation time, the largest value gor Eny case computed.
Accordingly, no cases were attempted for the spherical probe at this value of
Rp/Ap_ for any intermediate values of T4/T_.

When several cases were run for decreasing values of the
repelled-species temperature, the attracted-species parameters being held con-
svant, it was found that the program became more demanding of a fine compu-
tatisn net but it was possible to move Rp closer to the probe because of the
contraction of the sheath as repelled-species temperature was decreased.

= When a sequence of cases of decreasing attracted-species tem-
peraty  #&s run with the repelled-species parameters held constant, only small
changes 1. computation net requirements were noticed in the case of the cylin-
der, but i the case of the sphere, the required values of net fineness and
outer bounda™ radiuvs increased rapidly. At the same time, the collected
"Tent result was observed to become more and more sensitive to small changes

'Ne form of (Ye potential until a point was reached where computations

,ed to be pr. ctdcal. This restriction became more severe with increasing

e potential; f°r instance, it proved impossible to compute the ion current
collected by the sphe. %wr the case e T_ = =25, T,./T_ = 0.1, RP/AD_ = 10.
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These findings are in accordance with the prediction deduced from analytical
considerations in Sec. XIII. These restrictions proved less severe when calcu-
lations were made using the mono-energetic distribution for the attracted species.

Table 4 shows suggested computation net spacings and outer
boundary radii to be used with program i, as determined by experience using the
program. It was found experimentaily that in most cases the outer boundary was -
at a large enough radius to produce results of the desired accuracy if the net
charge density n4+ - 1_ was smaller than 0.001 at the boundary.

Figure 11 shows ion and electron charge densities as functions
of radius for a cylindrical probe for the case e¢p/kT_ =25, T,/T_ =1, EP/AD_=10,
for various positions of the outer boundary radius Rg. The significant feature
of this diagram is the fact that in each instance charge separation is seen to
occur near the outer boundary. This occurs because of the fact that the assumed
relation (8.9) between the potential and its slope at r = Rp is only an approxi-
mation to the relation that would actually exist at that radius in the infinite-
plasma case; the potential adjusts its shape to compensate for this error by
increasing its curvature near this boundary. Because Poisson's equation (4.3)
is satisfied everywhere, this curvature implies a charge separation near r = Rg.
Since these boundary conditions are derived from the leading term in the repre-
sentation of the potential for large radii (Sec. XIII), they become more nearly
correct as the boundary radius is increased; accordingly, the charge separation
near r = Rp may be expected to decrease as RB is increased. This behaviour is
in fact seen to occur in Fig. 1l.

Because of this ability of the solution scheme to locally adjust
the potential to compensate for errors in the boundary conditions at r = R,
it may be expected that computed values of current collection will approac
the limiting value corresponding to an infinite plasma very rapidly as Rp is
increased. This is in fact the case, and it is of crucial importance in de-
signing a nractical solution =cheme. Earlier trials with a boundary held at
zero potential required Ry to . jual to many probe radii before the current
collection results were observed tc approach a limit with increasing Rg. Plac-
ing Rp at such large distances from the probe resulted in unacceptably large
expense in computation time per result; it was evident at that time that a
better set of boundary conditions was required before the computation scheme
could be made useful.

The remarkable insensitivity of the solution scheme to errors in
the relation between the potential and its slope at r = LB was made use of in
carrying out the computation for the cylindrical probe with zero temperature
attracted particles, using the boundary conditions for the finite-temperature
problem. It has been shown (Sec. XIII) that in the zero-temperature limit,
the asymptotic form of the cylindrical-probe potential is no longer propertional
to the inverse of the radius but to the inverse two-thirds power of the radius.
When computations for this case were carried out using the finite-temperature
boundary conditions, experimentation with various values of Rp provec. the re-
sult to be so stable that it never became necessary to put the more exact
boundary conditions into the program.

The key to this insensitivity toboundary conditions is the fact
that the boundary potential is free to seek its own equilibrium value; the
strong tendency of the plasma towards neutrality tends to fix the local potential
a small distance from the boundary waile a small amount of charge separation
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adjusts the derivative at the boundary; the disturbance in potential shape
caused by the presence of the boundary is thus confined to the immediately
adjacent region.

In order to initiate a calculation with any one of the programs
listed in Appendix I, it is necessary to provide it with appropriate data as
indicated by comments included with the program listing. In the case of Pro-
gram 1, this data includes the values of the parameters m,, g s and 7.
Depending on which species is used as reference, there arg two equivalent ways
of specifying these gquantities. For example, it is possible to carry out the
calculation for the case e¢ /kT_ = -25, T /T_ = 0.75, RP/AD_ = 10, using as
input values m3 = -33.33, mg = 0.75, y = 133.3. It is more convenient to inter-
change the roles of ions and electrons and use the values m3 = 25, g = 1.333,
7y = 100.

It is also necessary to specify, as input quantities, two

coefficients which determine the magnitude of the mixing function (Sec. V).
Choosing values that are too large causes the computation to diverge in an
oscillatory manner (Appendix C); choosing values that are too small causes
excessive amountsof computation time to be used before adequate convergence
is attained. The fortran subprogram ADJUST (Appendix I) monitors the conver-
gence of the calculations and attempts tc correct the mixing function accord-
ingly, thus making some allowance for a poor initial guess.

This subprogram also ends the execution of a case when the
accuracy of the computed attracted-species currents and net charge density is
sufficient. It uses two criteria for making this decision. The first is the
convergence of the current result to an asymptotic value; three computed
current values, spaced 10 iterations apart, are stored and used to calculate an
asymptotic result, based on an assumed exponential approach to equilibrium;
if the third result differs from the asymptote by a relative amount less than
0.001, the first criterion is assumed satisfied.

It was found necessary to include a second criterion because of
the non-monotonic nature of the approach of the current result to its final
value. This behaviour is illustrated in Fig. 12, which shows computed current
as a function of iteration number for a typical case. This behaviour caused
‘a tendency for the calculation to be terminated prematurely by false indications
of approach to an asymptotic result.

Accordingly, convergence is now also tested by comparing the
quantity 0.y computed at the end of a given iteration with the unmodified net
charge density 7, - 1n_ produced by the next iteration. If the calculation
has converged fully, these must agree by definition; the square of the rela-
tive difference between them is averaged over the interval RB-Rp and iteration
continues until this average is less than 0.0l.

During early development of the program, an attempt was made to
speed the ‘calculations by storing values of the net charge density distribution
over several iterations and projecting the entire distribution ahead to an esti-
mated asymptotic result. This procedure failed because of the sensitivity of
the program; it almost inevitably produced a fictitious system of potential
barriers more complicated then any of those for which calculation of chargs
densities had been programmed.

The optimum method of generating each Maxwellian result is
nosmally to begin by computing the corresponding case for mono-energetic
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attracted particles, and then to use the charge density distribution resulting
from this case as an initial approximation for the Maxwellian case. Since the
time per iteration for the monov-energetic case is much smaller than that for
the Maxwellian, this procedure usually results in a smaller total expenditure
of computer time and produces an extra {mono-energetic) result as a bonus. The

first two examples of computer output shown in Appendix J illustrate this pro-
cedure.,

Program 2, which is used in computing the case of zero-temperature
repelled particles., has presented considerable difficulties in operation. This
is apparently because as it converges toward a result, it often passes through
a set of approximate configurations in which the calculation of a succeeding
iterate is highly sensitive to the precise spacing of points in the computation
net and resulting inaccuracies in the computation are capable of setting up
stable oscillations which prevent convergence from being completed. These
difficulties seem to be less severe in many cases if a very coarse or very fine
net is used; however, these remedies have the disadvantages of inaccurate re-
sults and great expense in computation time, respectively.

In spite of these difficulties, this program has been success~
fully used to compute spherical and cylindrical probe characteristics for values
of Rp/Ap_ from 0.5 to about 20. Since in this case the planar-sheath approxi-
mation (Appendices F,I,J) gives the limiting form of the probe characteristics
for large RP/AD_, results for values larger than 20 can be obtained by graphical
interpolation to a high degree of accuracy. '

Computations using Programs3 and 4 are much simpler to carry out
than those using Programs 1 and 2; the operation of these programs may be
studied by examining the relevant equations in Appendices F and G, as well as
the listing of these programs and samples of their output in Appendices I and
J, respectively.
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APPENDIX I
Computer Program Listing

The Fortran II Programs used to make the numerical calculations
are as follows:

Main Program 1: used to carry out computations for the general case.

Main Program 2: used to carry out computations for the case of zero-
temperature repelled particles.

Subprograms ADJUST, COOKIE, CHARGE, CUBIC, POLATE, CHAMON, CAL, COEFT:
used by main programs 1 and 2; COEFT is also used by main
program 3.

Subprograms FIRST, SECOND, THIRD, FOURTH, UNO, DUO, TRE, SDFN: used together
with main programs 1 or 2 to carry out calculations for
spherical geometry.

’

Subprograms FIRST, SECOND, THIRD, FOURTH, DYO, CDO, TRY, CORE: Used together
with main programs 1 or 2 to carry out calculations for
cylindrical geometry.

Main Program 3: used together with subprogram COEFT to calculate the
planar-sheath limit of the case of zero-temperature
repelled particles as described in Appendix F.

Main Program 4: used together with subprograms POWERS and CHASPH to obtain

a numerical solution of the Allen, Boyd, and Reynolds equaiion
(Ref. 6) as described in Appendix G.

A listing of each of these programs follows:
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XTL SBECIFIES AMOUNT OF QuTPUT FOR EACHM [TERATION EXCEPT LAST.
K12 SPECIFIES AMOUNTY OF OUTPUT FOR LAST ITERAT|ONe
KT3I SPECIFIES MANMER OF WENCRATION OF FIRST ITERATIONG
KT)e} = POLYNOMI4L COEFFICICNTS ARc READ IN
KTIe2 =~ RE-USES ET4 FROM PREVIOUS CASE
KTIa3 = USES PREPARED POLYNOMIAL
KTJea = USES POTENTIAL @MIChH IS 50 OF DUHYE TERM AND
PONEQ=LAY TERW
KTIeS = READS ETA FROM CARDS ANO INTERPOLATES
M 1S NUMBER OF POINTS [N COMPUTATION NET.
NDUB IS ITERATION AT whiCH DENSITY OF PGINTS It COMPUTATION NET
IS DOUBLED.
NEND (S MAXIMUM NUMBER OF ITERATIONS.
NPRINT = OUTPUT wiil OCCUR AT EVERY NPRINT.TH NET POINTe
MOOE SPECIFIES wrbkTrtw COMPUTATION 15 FOR SPHERICAL OR CYLINDRICAL
PROBE o
<WIT SPECIFIES MOw MUCH CONTROL I35 SXERCISEY OVER
CONVERGENCE OF THE CALCULATIONS gy SUSROUTINE &CJuSTe
K30 SPECIF IES tOUNDARY CONDITION: AT QUTER BOUNDARYe
xBDa1 = OUTER ROUNDAWY 15 AT ZERC POTENTIALS
xKBD22 =~ LINEAR RLLATION GETWEEN POTINTIAL oND 17§ RADIAL
DERIVATIVE 1S SPECIFIED 3T QUTER JOUNDARY.
MCO SPECIFIES PARTICLE DISTRINUTION FUNCTIONSe

KASE®1

READ INPUT TAPE S¢4eP|IePlOeGAMMA P LT IMedT2M
FORMAT( IPAL 1ueJeOP2FID(T)

READ  INPUT  TAPE 345ekTLeNToeXTIoMaNOUD sNLNU o NI INT ¢ 400E oK 1 T oKD
1 emCo

%5 FORMAT(1415}

rw

IF(kTI=21165¢ 165016
166 JFISENSE LIGHT ])167s163
187 IF(SENSE LIGHT 2)1&Be165
138 SENSE LIGHT 1

SENSE LIGHT 2

GO0 T0 3

183 KT1sKT1
KT2s<T2
222 PRINT 220¢KASE
220 FORMAT(12M0 HEGIN CASE 1%

Page 3
113 00 14 L1218
e AtlInlaed
GO 10 1%

116 READ INPUT TaPL 8,200enFE

200 FORMAT(IPELI D)
GO TO (2uBs290) eMULE

206 WRITE QUTPUT TAaPL 642°84uEE

208 FORMAT (87H COEFFICIENT OF SQUARE TORM IN (NITIAL APPROXIMATION |
18 1910}
GO T0 13

290 WRITE QUTPUT TaPE 64291 0EL

201 FONMAT (871 COEFF ICIeNT OF LINEAR TE 4 IN INITIAL ARPRQONIMATION 1
15 1PE10e M)
GO YO 19

118 mPoMe ]
READ INPUT TAPE Seltbal

116 FORMAT(IS)
READ INPUT TAPE BeliTetkTALLIslu] NP}

11T FORMATL 1P6L 1249}

186 WRITE QUTPUT TAPE &si1RaLIETAC) s luevPal}

118 FORMATIAM L ¥12e2Y  INITIAL VALLUTS OF STA AQE/ZUIXIPOE|2e%))
GO 10 1%

1L SENSE L IGHT o
SENSE LIGHT 1
KEND® S
GAMBGAMMA
PIOLOIR 1Y
POLOSP

GENERATE AWRAYS 5 ANU DXUS TO DEFINE JOMPUTATION NETe
FORM OF THESE QUANTITIFS UEPCROS ON wHhTrER ROGA (RAT (IO OF PROVE
RADIUS TO LAKGER DEUYE LENGTHY 13 GATATER OR Lu 33 THAN 206 OR 281

14 LMY
DELTSeR/FLM
wPeMs
RATOSMINIF 1RG0l es)
ROGAISQRTF LGAMMARKAT))
17 LAQGA=IBe 1 1 200D e lNe

283 0O I8 1ol
riEsi-1
SUIIeDELTSSFIE
IPIROGA=2:8!J851 36040818
300 xtieguPFieblll)
L L YRRR LS IR A)
30 YO 62
P Y YR RLIPT S YRR
-T2 YRER LI NIN
302 ROP(11ntaurnt )
FTCTRNES IRNT TP ]
SCOTLIVSSANTF (] 0=n5QL 1}
16 COOKt1ICOURIELI QT LAY
a0 YO 260

ZWRel ¢/ the = ONT Y
IPPR 000/ (SNTS0GA )
avaenpele

ZNNS | INBZPP ) AV A

221 KA eKASESS Page 2
$#4QTINIIZ1 40214320
380 OTIs0TIN
arzeqran
321 GO TO (6+270) sMOOE
6 WAITE OUYRUT TABE 847
7 FORMAT(32W) SPHERICAL PROBE CHARACTERISTIC)

GO YO 9
270 WRITE O1TAUT TAPE €271
271 PORMAT(3en] LYLINORICAL PROUE CHARACTEARIATIC)
9 WRITE OUTRUT TAPE §eJ0sPIIsP[0.GAMMASIQT] 012
10 FORMAT{BXNINP | 3o TRIND | e BAINGAMNA ¢ IX [HO¢ TRIHAT L ¢ TRINAT 2/
1 IXIPOEICeIeOP2F10e7)

a1 WRITE OUTAUT TAPE & KT14KT2eKTIaMaNOUS s NEND ¢ NPR INT o MOTE o xwr I T ox 80

) eMCD
8 FORMAT(S6m KT: XT2 T3 M NDUD NEND NPRINT MODE xXWiT XBD MCO
171xi81%)

TIMECCLOCK(Os0)

101 Pladyie18927
SAYR[ala7724339
vieisl1ed/0]
Save],0/5QTP1
MADa L
MEyeDd
< INGSe)
MZETS )
GO TO (111¢112013340104118)sxT)

< READ ON GENERATE QUANTITIES REQUIRED TO oEGIN FIRST ITERATIONe

111 GO TO {2624263) «MODE
262 READ INPUT TAPE Se8detAtl)els2e6)
44 FORMATI(IPTELIVD}
182 WRITE OUTPUT TAGE 6+18UstAlLl1el2248)
180 FORMATISIn COEFFICIENTS IN INITIAL POTLNTIAL APRIOXIMATION ARE /
1 INIPIE1U3)
GO TO 1%
363 READ INPUT TADPE Ssaasia(ljslateT)
WRITE OUTRUT TARE 64180e(AIL)sI2LeT)
GO TO 8

112 ~NeMP=)
NPamMp
FACTR (GAM/LaMMA ) (P ]3/P10LD)
00 92 LeleNR
95 ETA(l)eETatlIwFALT
1F(0«POLD) 153364338
338 INGSe2
&3 10 18
336 1FIN=MI1Te15013
17 van
WRITE QUTRUT TAPE 6422+M
22 FORMAT(aH  M=(D)
G2 to 18
19 LN
wPaMe |
29 21 1za.me
Jatl=1doL )
21 ETATY:ETALY)

G TO 18
20 253 lulemP P.'.‘
FlEal=t
SC1VaDELTSHF IE
XCTI2INPS{le. =SI11)=AVAR{]eI=Gt 1)) REERN

DTS 2=ZNPrENNSAYAR (1 o0=5(1) I 88 (ENN=~Le O
2%6 WP tLi1eleisXtl)

X301 extlIne?

SCATCIIa5ARTF {1a0=X5Q 1))
2%% COOK11)aCOOKIE(T42T140T2)

63 T2 28y

SUPPLY FURTHL 3 GWUANTETIES REQUIREU TO SEGIN FIRST I TERATIONS
23 IFIRENDI2Ue2002)

29 GO TO (2%1294425342070 1687543

294 GO TO {37338k INGS

338 NPPINP+ | '
PONRE4 4 IFU~FLOATIF({MODE)
03 3IF [uNPP MO

339 STACLISETAINRISIX(])/XINP) ) € 2P0WH
<INGSat

337 GO TO 2642840 M00L

25 QUALaU L
27% JAA3=00E
NELEELE LT §
00 24 UnJady B
24 QuAleQuAl+Al D)
FRAORP 1 I/0VAI
20 27 ywiahgv80
AtJ1uat)) WERAOR
DO 29 |ujnP
QuAl®de0
QuaZaley
PITE DRI
00 Jv JeJhay o8
JIL8J=2eMO0E
QUALRQUALsat SItut ey
QUAZRQUAZSFLOATF (U 0ALJIRRL )00 yu])
30 QUAITQUAISFLOATF | JOUCC /i PALLI SN I R0 yo2)
ELNREL VI YY
ONIDS1 ) sQUARSIXDS L)
29 ETAt1)1eQUAI/GAMMA
30 T3 2742001 eM0DT

-

2

247 avEsled=8lL
AdravEest)
AdenkEeel)
G0 TO 12980296 1MOOE

299 30 213 letemp

JvE AL AP (ROGARL L o 0= 100/ML1N 2 )

2etreaammtl YEHNISNROL 1)

ORICSIT 1atAASOVESI | oOMMOGAZN( 1} ) 0 Re0BQBONL 1 ) 1ODROBE Y
CTALD) e =AASOYEONL ] ) ORATO~R400BNO ( XNBAL ] ) 905) /0AMMS

90 *0 »Y

n

<

2906 00 240 sl
OvEslupr (AOSASL L 40=100/RE1I D)
AU oA INIL )
2011 0AASDYECAGRI +BNSRY ) )
ONIDST] 101 AASOYRE{04B/RON]I SNIXISROGA/XSOL L) 1 #80)S0NCA1 | |




ann

Pagm§

298 ETALL Yoo tAASOYZAROR | # XSO L1 /8,0¢4ROGAMROGA) +HBONIAL L) OX ¢ §) )/GAMNA

GO YO 28)

KT KNO=MAL
IFIL=1)998:999+9968
998 KNOMBKNO~1
L
waLel
LR 1 TR
ML S o,
URsCTA(KPL ) /240
ONSETA(XM /240
DA=UP-DN
DBeUP-ETAIK] +ON
DO 188 Js2e
DELEPLOATF (=) /FLL
108 ETALJIeETA(K) eDASDELSNNSDEL 802

00 193 XEYS2.xXNIM

KakEveL ]

LT

JSeKMe]

JE =]

KPL X s

L LIS

KNOL ML

L WL L

URSETAIKRL /2.0

ONETACXKM 17200

UPMSETA (RMPL ) /240

ONMIETA (KM, ) /240

OAsLP=DN

DIPUP=ETALK ) SON

DAMBUPM-DNM

OBMIUPM-ZTATKM) SONM

00 191 JsJI5e0E

OELSFLOATF (U=t} /FLL

OELMaF DATFt JaKM)} A LL

ETCaETA IR SDASDELIDRSDEL  #2

ETCMSETA {KM) ¢DAMSDELM4DIMBIELMS 82
191 ETALJISETCOADSF (DELM) +ETCMPIABSF (DEL)
190 CONTINUE

JSIKNOMS, +2
JEPRNOSL
DO 192 JuuSeJE
DELSFLOATF { J=i ) /FLL
192 ETALJIETAIK)SOARDELIOISOEL P42
999 KAYAKNOSL 41
RAZEKAY S}
IriKAZ-MD) 19441944293
194 POWRE4,9290~FLOAYF {MODE }
80 193 JemAZew?
193 ETALLIETE(KAYI®IXEII/XNIKAY) | $3P0WR

293 GO TO (26428u)sMODE

INTEGRATE ETA AND EMPLOY BOUNDARY CONDITIONS AT OUTER EDGE OF NET
TO OuTAln R1° AND UXIDSe

26 00 31 [e] M0

33 YIIIneGAMMARETALY IZEXSOT1IRe2)eLXVSCL )
Zi138d,0

P 1
GO TO (4le30ueTieTl)exT] e
OuTPUT AS SPECIFIEL BY KTle
300 mMyxs10

Lymsy
303 KYTaXUODF IKEND e MYK )
IF(KYT)IISe316318
316 xyTe10
319 IF{P13) 304304303
34 YYYIRYT)avPOS
G0 YO 308
308 YYYIKYTIsvNEG
GO 7O 308

306 IF(KYT=MYK)I10e307310
IBT 1P (P13)3080308:309
308 WRITE QUTPUY TAPE G+3CZIREND«YNEG(YYY(L)singauyy
302 FORMATISH KENDIS 26N YNEGFQ.8.6H YPOSe10F9.4)
GO TO 310
309 WRITE OUTPUT TAPE 6+301«KEND+YPOS(YYYLI)elnlavy)
301 FOAMAT(SH KEND[Awbit YPOSRF Gebe6H YNEGRIOF9.A)
G0 10 3T
310 GO TO (dhediiioly®

71 WRITE OUTPUT TAPE $485,YP0S»YNEG

A4S FORMAT(TH YPOLIPEI47:7H  YNEGRIPELAT)

T0 GO TO {41441041482)3KTY

42 WAITE QUTPUY TAPE G eddet 1 AOPCI I oETAIID aXECL I ETAPSI] ) (ETANGID 10
I 101 e MR aNPRINTY

A3 FORMAT(ZEIZN | REBIZRPCARINETA L OXRHX | o THEHETARS « TRSHETANG )/
1 1201X13:0PF 8ok IPAEI LR, )

CALCULATE NEW VALUES OF NET CHARGE OENSITV.

al DO 40 tetomp
Q0 ETAL1)IN( o0~ LOOK 1) POETALLIIACETAPSI L 1oL TANGET) }#COOKET)

1P (P39 350 38033)
%0 YUSERYPOS
T GO TO 32
31 YUSEeYNEG

G0 10 382

392 CALL ADNST(NENOsMAD S PEWOTI sOTZ¢RUIT20400) ¢ YWSESYINY)

2B 1P INEND-KEND 1) 8 Tedé
47 GO TO 131 Let12aIi0edbN 0T
12 MYKaXMODF (KCNDe10)
IFIMYRIZIIEeIL1e38D
313 LyMel
G0 10 308

31 XTrexT?
48 [P INENDKXEND 19999448
48 I (NOUB=KEND ) 50+ 51430

REND = NEND: STOP ITERATING,
v

99 IFiN]3)355:358,2%4 f
395 YINAYINYSSORTFiMIG)

GO YO 3I3Y
386 YINSYINY/SOQRTF (P16}

3L 10
GO YO Ja

36 DO 38 1s14MP
OXIDS(118Z(1}eDXDSLI)
38 v(11s0X10S¢)
ZilreP13 .
wiNce2
GO YO Je

280 0O 281 lsiews

281 Y(119=0XDS ([ I SGAMMASE AT/ (XTI TOXNSAII)
Z{1y=0a0
Kingald
GO 7O 3¢

282 DO 284 (sl P
OXIDSI1119Z¢ | P4OXDSCEI/NED)
284 Yi1)sOX1DSCI)
Zt1H=P1)
KINK s
GO TO 3a

L] l(E)'llI)OKS-OCVII)GB.O.V(ZI-VKSI 19DELTS/ 1200
00 35 [=dwM

38 ZOLYRZUI=1140130084YEI=11eV 1N IwrL Jw2)=Y(1¢3110DELTS/ 2400
ZOMPIEZ (M) +(Be0eY(MPISEINY (M)=Y (M=1)) SDELTS/1200
GO TO (3643742822830 sk INK

37 GO TO (325:326)¢X80
329 EOGEE2(MP /(14w NIMP) ]
G0 10 327
326 mu"z-ﬂ'll‘l-X(ﬂ’libile(”l/DxDS(")l/(ZnO-KH‘))
327 00 39 (sl
OXI0S (1 )s0XIDS{ T} +EDGESDXDS (1)
39 XUC1)eZ{IIEOGERIXLII=140)
[FiMCD=11199¢199:340

2d3 GO TO 13304¢331)e%80
330 EOGE®=Z {MP} /LOGF {X(MP) )
GO TO 2332
k> 1} EDGE-lzl‘I-K(ﬂ’l'ﬂ‘lDS‘wllDwsl")l/lIOO-LOG”K(W)l)
332 283 510
OXI0S1)P0XI0SE 1 )SEOGESDXDS (/X (1)
26% X1¢1)eZ(3)+EDGEM.OGFIXIL)
IF(ME0=111990199+34C

CALCULATE POSITIVE ANC NEGATIVE CHARGE DENSITIES.

199 CALL CHARGE
G0 1O M)

340 CALL CHAMON
GO TO 341

381 IF(SENSE LIGHT 1)161¢160
161 IP(SENSE LIGHT 211624160
162 SENSE LIGHT

SENSE LIGHT 2

G0 TO 318

160 KEND=KENQ+1
[321144)

357 YPNuYPOSeSORTFIPIG) ?“e s
YNPuYNEG/SORTF (P16}
WRITE QUTPUT TAPE 6.98+YPReYNSIYIN

08 FORMATIGM VPNeIPE12eSebh YNASIPL1ZeB16M YINSIPEI2:5)

318 TOTALSCLOCK(TIME) /31000
WRITE OUTPUT TAPE $4319:TOTAL

319 FORMAT(29W0 EXECUTION TIME IN MINUTES FT.2)

G0 YO 3

< KEND 3 NDUte DOUVBLE NUMBER OF POINTS IN NETe

Sl IF(40U-26M) 34+58.%58
88 D0 52 I=l.MP
KuZh{mPal) el
CaMPafe]
82 ETA(K)ISETAIL)
Ma2OM
NPRINTEZINDRINY
60 YO 18

23 DO B3 1sSeMPed

ETACTI=318{IeUETAC1=4) ¢6eOPETAIL-2)-ETAL[)1/0e0
13 ETAL =L AN {=ETACI =4 140, 08ETA{I=2)¢2eQ0ETALL})/840
J4 WRITE OUTPUT TAPE 6+37.M
87 FORMAT( 2X2WMa 18}

850 LITESXMOOF (KEMDeS} &1

SENSE L IGHNT O

GO TO t81:62+81+88) 4L ITE
6! SENSE LIGNT

GO VO 2612801 4M00L
62 SENSE LIGHT 2

GO TO (2642801.M00E
63 SENSE L IGNT O

GO TO (2642801 +M00DE
&4 SENSE L IGHT &

GO TO (262801 M0DE
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#HOBE CHARACTERISTIC ~ REPELLED PARTICLES AT ZERO TEMPERATURE
OIMENSION YYY(10}

OIMENSION X(801)sNIO(4011s§1801)+OXDS(401121ROP(A01) ¢SCOTIAOL) 0

1 COOK(a011eX1(40] 240x108 (401 PeETALA01)+ETAPS (4011 +EYANG (401 )

2 AMO0(001)eOMGAGIA0L 1 sBETAG( 4011 sALFAG(A0T ) ePSIG(A01) +EPSGIAOLY o
3 VEAO11 264011 eINISO1}

COMMON XaXSOrSeDNOS sROP« SCOT +COOK o X[ 1OXIDS +ETAETAPS«ETANG¢RMO ¢
| OMGAGIBETAG MLFAG PS1GEPSG s YaZo SH

COMMON BIoSOTRI VIR L, SAY(MODE sMeMPIDELTS sGAMMA P [34P16sP174¥POS,
| YNZGNPRINT KT1 aKT2LL 1KEND

COMMON L IMK et TH oEXY s EOY N2 eNZRoNW s SW o 50A1DETAW BETAWA s MACK (MIKE ¢«
1 SCRITISCRITAILKILKAICALISSICROSS e YST o AMUCTHETA sKBO MG e MZET oHAL T

PTEC o NONDIMENS IONAL PROBE POTENTIAL FOR ATTRACTED PARTICLES
PROBYE = PHOBE RADIUS ~ DESYE LENGTM OF ATTRACTED SPECIES
SHERAD = INITIAL VALUE OF SMEATH €DGE RAVIVS 7 PROVE RADIUS
IF SHMERAD SvE » SHEDGE & SHERAD.
1# SHERAD s O RE=USE SHEDGE FROM PREVIOUS CASEe
1F SMERAD =VE » GENERATE SHEDGE FROM CHILO=LANGMUIR RELATION.
QT1 AND OT2 ARE COEFFICIENTS OF DESBYEs TERM AND +FAR-F IELOe TERM
TN MIXING FUNCT IONe

KT} SPECIFIES AMOUNT OF OUTPUT FOR EACH ITERATION EXCEPT LAST,
K12 SPECIFIES AMOUNT OF OUTBUT FOR LAST [TERATIONe
INITIA SPECIFIES WHETHER INITIAL CHARGE OENSITY FUNCTION ( E£T7A )
1S THAT FOR A CHILD=CANGMUIA SHEATH OR wHETMER PREVIOUS ETA
IS RE-USEDs
TINITIA @ | = CHILO=LANGMUIR SHEATH ASSUMED
INITIA 3 2 = CHMILU=LANGMUIR SHEATH ASSUMED TO BEGIN FIRST
ITERATIONS PREVIOUS ETA QE~USED WHEN SHEATH LOGE
RAOIUS 1S RESET.
INITIA = 3 ~ PREVIOUS ETA RE-USED.
M 1S NUMBER OF POINTS [N COMPUTATION NET,
NOUB IS ITERATION AT WHICH DENSITY OF POINTS IN COMPUTATION NET
IS DOULED.
NEND 1S MAXIMUM NUMHER OF 1TERATIONS.
NORINT - OUTPUT wiLl. OCCUR AT EVERY NPAINTTH NET POINTe
MOOE SPECIFIES WwHETHER COMPUTATION 1S FOR SPHERICAL OR CYLINDRICAL

PROBE
MCD SPECIFIES PARTICLE DCISTRISUTION FUNCTIONS,

KASEw|
3 READ [INPUT TAPE 5, &4,PTEEPROBYE « SHERADIQTIM.OT2M
4 FORMATIIPIELQCeIe0R2F 10T

READ  INFUT  TAPE 3eSeKTLKT24INITIAMINOUS +NEND sNPRINT s MOOE yMCD
S FOAMATCL1415)

IFIINITIA=2)168%5+1854160
166 IFISENSE LIGHT 111674169
L167 IFISENSE LIGNT 211684165
108 SENSE LIGHY 1

SENSE LIGHT 2

S0 Y0 3

165 XT1eKT1
XT2exT2
222 PRINT 220.KASE
220 FPOAMAT(12H0 BEGIN CASC I%)
221 <ASESKASES]
IFIOTIMII2143214020
320 QTI=OTIN
QAr2eQT2M

16 FiLMun Page 11
DELTSH1s0/FLM
LT 231
vzP=0.l2s

283 DO 18 [=]+sMP

FlEsl=]
St1)aDELTSFIT
ROP (118 SHEDGE ={ SHEDGE =102 #1YZPS(140=5111)0(14=YZP)0(120=50111482)
X¢1V=1.0/R0PC1
XSOC1)wN(lp o2
OXDS( 1) e=XS0C1) 8 {SHEDGE=100) 81YZP+2,08(140=5(1)18(1.0=Y2P))
SCOT{1IaSQRTF{1.0-XS0¢ 1))

18 COOKI11eCOOKIELT+0T1.QT2)
GO TO (20s23¢2V1sKSET

20 1FL28INITIAMKSET=8)1207,:2074294

27T 00 210 1sluMP

XI{I)aPTEES{ (SHEDGE =1 «Q/X ([ 1/ (SHEOGE=100)180]1 43333322
210 ETAL1)20,S/S0RTF L1 40=24ux1t1))

GO TO 294

294 GO TO (J70e370:228)«RSET
370 GO TO (26+28v)+M00E

COMPUTE POTENTIAL X1(1~MP) AND ITS GRAJIENT OX10St1=-MP1 USING
CHAAGE DENSITY CTA(1=MP}

36 00 33 islew

32 YUIIacGAMMARETAL] +/ (XSO )*#2)80xD51 1)
2112040
L1l 13
G2 TO 34

36 DO 38 [=].mP
DXIDSI[18Z¢ 1) 80X0SE 1}
38 YOI AOXIDSEL}
ZitrymP(])
Kingn2
GO TO s

280 DO 281 IsleM®

201 Y(11e=DXDS{ LI ISGAMMASETACT)Z7EX 111 #XSOL1})
Zt1)e0.0
3L 18]
GO TO 3

202 DO 204 1si M

[ 31-2 IRREFANRL -LI-1-1REVS (RN
284 Y1) aDX108( 1)

2(1rvo1y

L3L 411

GC TO Je

36 2021024120150V (1108,00Y(21-Y(I1ISDELTS/12e0
00 35 twdem

VS 20190Z¢ =104 (13e00tYLI=]14Y (1) 1uv(]=Z2)aY{1e]))ODELTS 2440
ZIMPIe2IMIS(B.00V (MO} 98008y (M)~ < 4= ))RDELTS/1260
GO TO ¢38432%¢2822330) eximx

325 EOGESZIMP)I /{10 (MP))
327 DO 19 telewe
OXIDS ¢ IeOXIDSI 1 I+EDGESDXADS LT )

321 1F(SHERADIA0V401+802 Page 10

430 SHEDGES140+101218(PTEL RS0, 75} /PROBYE
CO YO 40t

432 SHEDGE > SHERAD
GO 70 01

401 GO TO (62700 +MODE
6 WRITE OUTPUT TAPE 6.7
7 FORMAT ( 73] SPHERICAL PROBE CHARACTERISTIC =~ REPELLED PARTICLES
1AT ZERD TEMPERATINE}
GO 7O 9
270 WRITE QUTPUT TAPE &:271
271 FORMAT({78H] CYLINDRICAL PROBE CHARACTERISTIC - REPELLED PARTICLES
1AT ZERO TEMPERATURE )
9 WRITE OUTPUT TAPE §010.PTEEIPROBYE « SHEDGEQT140T2
10 FORMAT( TXANOTEE + AXGHPROBYE » AXONSHEDGE ¢« TRIHATE « TXINGT 2/
1 IXIPIE10e3+0P2F10sT)
81 WRITE OUTPUT TAPE &.B8,KT1,KT2sINTTIAMeNDUB sNEND sNPRINT o MODE ¢MCD
8 FORMAT(ATH KTE XT2 IMITIA ™M NDUS NEND NPRINT MOOE MCD /LIXIAIS)

TIMESCLOCKIO0)

101 Plelerai3927
SOTPIw 147724539
VIPIe1,0/P1
SAY*140/5QTP1
MADe L
MEWeO
KUTYe}
GAMMASPROBYES 82
Proel 0
PTEE=-ABSF IPTEE)
P1I*PTEE
X801
MZETR2
IFCINITTA=2)1501%0012

112 Nompa]
NO=MP
FACT=GAMOLD/GAMMASPTEE /PTOLD
DO 90 131«NP
Q0 ETACT)1=sETAC]}eFALY

216 IFIN-M)I17415419

17 M=
WRITE OUTRUT TARE 6.22M
22 FORMAT(ANM MaiS5)
G0 TO 18
19 LansM
MBame |
D0 21 1a2.MP
Jetl=118L01
ETAC]IYSsETALL)
GO YO 18

2

IS SENSE LIGHT U
SENSE LIGHT 1
KEND=O
GAMOLD» GAMMA
PTOLDsPTEE
KSET=1

39 X1C118Z(1)+EDGES (X [1~1e0) Page 12
GO TO (1994360+340) 4MCD

330 EDGE==Z{MP)/LOGF (XIMP) )
332 00 285 [s1.mP
OXI0S(1)eOXIDS{ L 14EDGE#OXDS L 1/xi 1}
28% X1¢1InZ(11+EDGES.OGFINIL )
GO TO (199+3400340) ¢MCD

4 COMPUTE NEW CMARGE OENSITY ETAPS(1-Mp)

199 CALL CHAGGE
GO TO 3s1

340 CALL CHAMON
GO TO 3a1

3al IF(SENSE LIGHT 1)161el8UL
181 IFISENSE LIGHT 2)162¢16U
162 SENSE LIGHT |

SENSE LIGHT 2

G0 1O 318

160 XENDsKENDe]
«T)exT]
. GO TO (41s30CeTloTl)exTy

330 MYKs|D
LyME|
233 KYTEXMOOF {KEND s MY )
[FIKYTII1943164315
316 X¥YT=10
IS YYVIKYT)evPOs

306 [P IKYT=MYK)I10+30T¢310

307 WRITE OQUTPUT TAPE $1302«XENDLYYY(T)ialulomyic)
302 PORMAT(SH KENDE4¢3M Ye10F|0sa)

310 GO TO {81s3111el¥YmM

Tt WRITE OUTPUT TAPE 61+4%5,YPOS

A% FORMAT(IN YuiPEl4eT)

T0 GO TO (8)e8le8]0a2)4xT]

42 WRITZ OUTPUT TAPE €443+ 014R0P(I1eETACIIsXI(1IETARSI] ),
1 [31eMPeNPRINTI

43 FORMAT(ZETXIMISINTHRI L 1 /RPe 1 IKINETALI2XZHXT e TUTHETA NEW) S
1 (2(AXTA0PFLOeSeIPIEIATI )

41 DO 40 1s)em®
ETANG(1190e0
40 ETALLIn{)+0=COOKI] 1 ISETACLISETAPSCLISCOOKITY

PTEARR (X (MP I =XSO (MR )} SDXIDS (M9 ) /OXD S Ll )
NHAL T eNENO
CALL ADJUST INHALT «MAD sMES+3T1+QT21300623+PTERRPTINY)

IF INHALT-KEND~8) 228 4380,228
380 IFIKENO=(KEND/1019101220:3714220
371 ERRORPTINY/PTEE

IF(ABSK (ERAOR 1=0100021366+345+34%

‘e SHEATH EDGE POTENTIAL GRADIENT IS SMALL ENOUGHe E£NO EXECUTION.

366 NENDSXMINOF (KEND S8 s NEND |




V CITE OUTPUT TAPE 6:363+ZRA0R
GO 7O 228
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(4 USE CURRENT VALUE OF SHEATH EOGE POTENTIAL GRADIENT TO RESET
[4

nnonan nn

an

SHEATH EOGE RADIUS.

345 EROLEQD
SMOD®SND
ERD*ERROR
SHO = SHEDGE
KUTY IKUTYel
I IKUTY=3)38%,:386:386
386 SHEDGE e SHO-EADE(SHO=SHDO} /LERD-ERDD }
1F 1 SHEDGE=14+1) 3304350, 3860

38% 1F(OXIC 5iMP)IIIB)4I8C 352

352 DXIS=X50{MP)SDX10SMP) /OXDS (MP)
02X i "=ETA(MP) 6GANNA
1F(D2X] 154943504330

IS0 WRITE QUTPUT TAPE 5:349.KUTY ¢ERDU (ERD 2 SHOD « SHO ¢ SMEUGE
69 FOAMATIZOM THOUBLE [N SHEATH EDGE RESIT 1441PSE12.43)
WRITE QUTPUT TAPE 844041 14ROPIIIETACLIoXLITIETARSI bololiP)
SENSE LIGHT 3
SENSE LIGHT 2
GO TO M8

349 SHEDGEwSHEDGE=Dx /02X
GO TO 80

IS1 DO 383 Lwlem
1aMP=L
1IF(OXINSTII41))]54.354,380
34 1FIOXIDSCT113532353,35%8
353 CONTINUE
GO 70 380
385 X(MPex{1I+IR(Ie11=X¢{I11/t=OXIDSL1+1340XIDS(11)00XIOS(T)
SHEOGE® 1 4O/X(mP)
GO YO 380

230 GO TO (361+362+382+36214KT3
62 WRITE QUTPUT TAPE 6¢363+ERROR«SHEOGE

363 FORNAT(SOM RELATIVE ERROW IN SHEATH EOGE POTENTIAL GRADIEMT Fllsés

1 241 NEWw SHEATH EDGE RADIUS 1PE10D)
361 KSETe)
GO 7O 18

228 1P (NENO-KEND~1)4
AT GO TO (3114312430
312 MYKaXMODF (KEND10)
1M EMYRI31103110313
313 LYMa2
GO TO 306

311 KT1eKT2
46 [FINEND-KENG)3I18+318+48
48 IFINOUB-XEND 130451 ¢50

318 TOTAL=CLOCKITIME) /10040
WRITE OUTPUT TAPE 64319:TOTAL

319 FORMAT(29HU EXECUTION TIME IN MINUTES F7.2)
GO 1O 23

18
SUBROUT INE AQJUST (NEND +MAD s MEWSQT 1 sQT2¢Ki I ToACCY s YUSE oV INY)

SUBROUTINE ADJUST MONITORS CONVERGENCE OF THE CALCULATIONS AND
TAKES CONRECTIVE ACTION WHEN NECESSARY.

IF XwiTel ADJUST TAKES NO ACTION.

IF XwiTe2 ADJYST DAMPS ANY OIVERGENT OSCILLATIONS.

(F XWwiTsd ADUUST ALSO ENDS EXECUTION WHEN ACCURACY OF RESULTS
IS SUFFICIENT.

1F KalTeA ADLUST ALSO ATTEMPTS TO CORRECT FOR SLOW OSCILLATION
DAMPING AND SLOW COMVERGENCE,

DIMENSTION YOHEK (10} JDCHEK(10) «ZCHEKC10T

DIMENSION X(401)¢X$0(401)145(801)«DOXDS(4011sROPIAOLISCOTIAOT}s
1 COOKIAD11eX1(4011+DXIDS(ATLI1+ETAIAOL1+£TAPS(SD1) SETANGI40) 1o
2 AM0L401)+0MGAGIAV] I+BETAGIA0L ) vALFAGIAOL ) +PSIGLADL) «EPSGLA0L) .
3 YISOL)«ZtaA0132501401)

COMMON X+ XSUs$e0XDS (ROPSCOTLOOK sX 1 +sOXTOSIETA JETARS o ETANG s RHO ¢
1 OMGAGBETAG S ALFAG\OSIGCPSGoYoTeSH

COMMON PIeSUTPIVIPI¢SAY sMODE sMuMB sDELTS s GAMMA P | 3PI6sPI7.YPOS,
1 YNEGINPRINT 4KT1KT2oLL «KEND

COMMON uuz.uzrn.:xv.cov-ngmzz.nv-su.sn.unu-unn.mn.-lu-
) SCRITeSCRITANKILKAICRISSCROSSsYSToAMUTHETA WKBD MCDIMZET o HALT

IFIKWIT=112200228¢23
1F KCHEX & 1 TO 9+ STORE VCHEKIKCHEK) AND RETURNG

21 MCHER s XMAOF {KEND« 1D )
IFIXIMER 125142804251
KCHERNL O
YCHEK I KCHEK 1 8 YUSE
1FIKCHEX=8)228e121+122
AB1B8

anxcs

COUYCHEXS)

Go TO 228
IF(KCHER=ICY]204230,228
Ageg®

89=Co

COsYLHEKLD)

o TO 228

259
2%1
232
L2t

122
124

I KCHEX » LU STORE VCHENII0) AND LOOK FOR OSCILLATIONS 1IN
YCHECI =100 s -

Al0eB10

B810eC10

C1OnYENEX L L)

50 235 Is2410

23 OCHEX (1) avCMERES ) evdhExi]=1)

00 236 le2e%

IF(DCHERTE T DI23742370 238

17 (DCHEK (1133 12302362236

IFIOCHERITISLI 123602364122

CONT InuE

00 240 1s2.9

zcuz-cn:-uasrwcuenxn«ay«ocnz-:uonn)ho

SMCMEXS 00 N ;

00 262 1e2.8 if

SMCHER ® SMCHER »ZCHEX 1 [+ 1 3B28MEX (1Y

IPISUMCHER=8:311230127:24% °, : [ .
. . t

237
2
2%

26

~

ADJUST
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OOUBLE NUMBER OF POINTS IN COMPUTATION NET.

81 1P (A00-20M154,58+58

48 DO 92 1s1.MF
Knze(MP=114])
LeMP=1e1

52 ETA(K)ICETA(L)
MeZoM
NPRINTS2PPRINT
K& Te2
%0 10 16

53 [e5.MP¢s
= :eil 1=3)s(3e00ETAL 1=8146+00ETAL 1=2)=€TAC1:)7860

a3 ETAL=1)’ (".Yl(l“l‘.cO'ﬂT‘ll-Z)‘JIOOCYA(l)l/.oc
=4 WRITE OUIPUT TAPE 6¢37«M
87 FORMAT(2X2MM=18)

QESET SENSE LIGHTSe

80 L1TE=XMOOF (KENO &)%)
SENSE LIGNY U
GO TO t61462:83+6414L1TE
LIGHT 1
(26+280) $MOOE
LIGHT 2
(2602801 sMOOT
LIGHT 3
TO 126+280) ¢NODE
LIGHT &
(2642801 s MODE
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4 OSCILLATIONS HAVE BEEN OHSERVEDe OECREASE MIXKING AND RETURNS

242 NEwr3
MADS2
12% OT150T1 00,9
QT280T290+9
WRITE OUTPUT TAPE 6,127«XEND+OTI QT2

127 FORMAT{THD KEND= 14227 049 DECREASE IN MiXs GT10F10:7+:5N GT2e

1 P13«

128 DO 247 =1 /M

247 COOK(11eCOOKI])#0e®
GO YO 228

< QSCILLATIONS FOUND TO BE ABSENT OR DECREASING.
123 1FIXWIT=2)1228.2284132
132 GO TO 1280+281).MZET

270 MEWsMEWsE
IF{MEW-2)228413441)4

281 YMINRYCHEKT])

YMAXTYCHEK L]

D0 202 t=1.9

YMINEMINIF (YMINeYCHEK L 14131
282 YMAXSMAXIF (YMAX«YCHEK( {41))

1F (ABSF (20 { YMAX-YMIN]ZIYMAX+YMIND )=ACCY1203+283228
283 YINYS(CH4C10})/240

GO TO 278

FIND OuT 1F CONVERGENCE TOWARD AN ASYMPTOTIC RESULT .IS veErY
INDICATEDs IF SO« GO TO 138s

on

134 RIO=(B[0=CLO1/tA10~010)
T OAF(RID) 22642280137
137 1F(RI0=1.0)138¢228.2208

0o

138 YINYZALIO=(ALO=B101/(1e0=R|0)
ALPME(C10=YINY}/{ALO=Y INY} . ,
FINSU 23,08 (LOGF (ACCYSYINY/(CLO=YINY))ZLOGF LALPH) )
KINS=FINS
IFIKINS=A01140018400 142

CONVERGENCE IS TOO SLOWe
DECREASED BECAUSE OF OSCILLAYIONS.

oo

INCREASE ([T,

141 1FIKW|T=31220,228:28
28 GO TO 112622281 ¢MAD

126 FACT= 1,11}
QTYSQY2eFACT
OTZ2eMINIFIOTYs0.7T)
FACTsFACTOOT2/0TY
QTSeaT)
Z1T=140-072
ZATeQTL#7ACY
QTIEMINIFLZITZAT)
“ews0
WRITE OUTPUT TAPE 64102«KENDOTI0T2+C102YINY

)

ESTINATE NUMBER OF [TERATIONS REMAINING BEFORE REOUIRED ACCURACY
S ATTAINEDe IF THIS EXCEEDS 40y GO TO l4le OTHERWISE GO TO 140.

1P MIXING FUNCTION HAS NOT ALREADY BEEN




an

G

ne
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142 FOAMAT(ANOKND ‘44130 SLD CONY QTLIF10e7e4M QTZFI0eTe2H YIPE[IDede
I 5% vinvIPE10ed)
26 DO 143 laloke
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WRITE QUTPUT TAPE 811 TZIKEND «QT1 +QT2
172 FORMAT( SHUKEND 14438M OSCILL
1 W QT2sF10eT)
3t MEwed

ATIONS OAMBING TOO SiuOwLYs OT18F10e7e

143 COOx¢1)ImCOOMLIEITQT1.0T2)
co To 228 MAD® 2
GO TO 228
FIND OUT IF RESUAT IS SUFFICIENTLY ACCURATE: IF 50¢ ENO EXECUTIONs
17 NOTe GO TO (4%, 228 RETUAN
enNp
140 tyoel
TFIABSF (CIO=YINY I =ANSF (ACCYOVINY) ) 1444144427
L84 17 (ABSFICO=Y INY)«ABSF LACCYAYINY)) 10641864278
2T tJu=2
1486 DO 266 1e«)eMo
266 YUIIRI2M(ETAPSC | 1-ETANGI11=ETAIL) I /LETAPS([I=ETANGILICETAII)) 1082
TOTe0.0
DO 2G7 1nleM
267 TOTETOTSIYIIS1I4YI[))I@(ROPII+1)-ROPITIIS0S
AVGESTOT/(ROP(MP) =14}
1F(AVGE=0eQl00)1 25542554277
277 13082
23% GO TO (27Bs18%)e100
278 WRITE QUYPUT TABE 64147 KENDsYINY
147 FORMAT(THO KENO®'4436n RESULT SUFFICIENTLY ACCURATE. YINYZIPEIO.Y)
26 NENDEXMINOF (KEND 4B NEND
GO YO 228
145 GO TC (228,2284181434).xwit
FIND OUT 1IF THERE ARE OSCILLATIONS DECREASING TOO SLOWLY TO ALLOW
ATTAINMENT OF QEQUIRED ACCURACY wITHIN 4C ITERATIONSe
1 S0« GO TO 159 IF NOTs GO TO 1816
34 1M (AB-39)14841480149
148 (F(49=-21T1151¢1510150
149 1F(A9-A1D}15Ls1500151
183 [F(83=-89}1152,152+153
1%2 17(09-31011914151¢1%4
183 [F(B9-810)1%4,134¢142
158 (FICA=CI)155+1554158
185 IF(C9=C1331514¢1%814187
1%6 tFICO=C13)15741874151
187 AMAR(ABSF(GB-AQ) ¢ACSF (A9=A101)/24D
AMBE {ABSF{CB=CR)I®ARSF 1C9=C10))1/72s0
IF1AMIS (AMY/ZAMA) #02-ACCYOYINYIIBI 4 1514159
181 4RITE QUTPUT TAPE B4l TCKENDCIOYINYaKINSJAVGE
17C FORMAT{7HC KEND® [4p3 Yo1PE|0ele8™ YINYSIPEIQeIe20W ESTDs CYCLES T
10 END 13¢86M AVGESUPFBed)
273 6o O 228 -
DECACASE MIXING FUNCT 10Ne
189 JTIeQT1#0.9
QAT23QT290.9
D3 171 1sl.Mp
171 COOK(11eCO0KE]) 8009
Fage 19 SUBROUT INE CHATGE Page 20 CHARGE
FUNCTION COORKIEtI+QTI«QT2) COOK 1E
c SUBROUT INE CHARGE USES X (1=MP)e DXIDS(I=MP)s AND ETA{1=MP) TQ
FUNCTION COOKIE 1S USED TO COMPUTE TME MINING FUNCTIONS [ COAUSE GENERATION OF CMARGE DENSITIZES ETAPS{1=MP) AND ETANG(|-uP).
[T 1S CALLED BY THE MAIN PROGRAM AND BY SUJACITINE ADJULT. c AND CUARENTS YPOS AND YNEGs THIS SUBROUTINE ASSUMES MAXWELLIAN
c PARTICLES ANO FINITE COLLLUTED CURRENTSe 1T 15 CALLED BY ThE MAIN
DIMENSION X(801)eX5G(4011456431)3DXDS(401)ROP (401 1+SCOTIA0}a 4 PROGRAY WHEN MCD = 1o

1 COOKIAUL)IeXI{aL])sDKIDS AU} I vETALOU|ILTAPSIA01) sETANGEAOT ] ¢
2 AMOLADL) eOMLAG AL ) e TAGIACT) ¢ LFASIGUL > ePSIGIAD] 1 sEPSGIaD] ) o
3 VU411 e2(aL114SHIATTY

COMMON X ¢XS5Ue5e0XVSeHOP s HCOT e 200C X[ 40X IUSeETAIETAPS (LT ANG ¢4 MO o
1 OMGAGIBETAGIALFALIPSIGIEPSGeve2 e 5

TOMMON P1+50TP1oviP|eSAYeMIDE «MoMP s IEL T5054MMI 4P 134P 184D 174 vPOS e
1 YNEGINBRINT4xT1 oK T2 oLl sKEND

COMMON L INKBETHICRYsEDYINZINIZING ¢ Gue SNAeIETAL o IETAWA s MACK o M| XE «
1 SCRITSCRITAILKILKAICRISSIZRAGSYS T 0 AMUSTUETA 4 CUD ¥ HCT A MZE T

ZAQRSOATF {GAMMASMINLIF IP184140) )

GO TO 110ULZ2u0) «MIDE
COOKIEQTI #X( | ISEXPF (ZA0®I 1 a0l sl /X (111D 2T20XSI(])
agruan

AOXISSORTF IR Y

CA0K TERQT] #HOX I SEXPF (Z8D® 11 a0=1 6D /XLT1 1)
RETUAN

END

+QT28x1 1)

DIMENSION [XKRTITI3)a[wtI}eLOFKi01eBBETAWLIIe55W (D) sMONKID}#SKRITLI)
OIMENSION QXRITIZ) etsu [T}

OIMENSION X1401)+XS0(AU1)¢3(a01140XD504011«R0P(4011+5COTI401)

1 COOKI(aQL)IeXIta01)4CNIDSEAULIIsETALAD ) eETAPSIAD1IIETANGIA0) Iy
2 AHO(401) 4OMGAGIAD I 1+BETAGIAO1) s ALFAGIA3114PSIGIA01 1 EPSGLADY

3 YeaU1)eZ(A4UIIeSM(A0T)

ZOMMON XeXSOsSeDXD5sROPsHCOT sCAOK 4 XT s IXI0SETAJETAPSsETANG RO«

1 CMGAGBETAGALFAGIPSIGeEPSGeYnZasH

COMMON PT1453TO1svIP {4 SAYMODE sMeMP W DELTS0GAMMA P ] J4B164P I 7eYPOSe
1 YNEGeNPRINT oxXT | oK T24LL oKEND

COMMON L INKIBETHEXYsEDY ¢N2 sNI2 NN e Su s S vSETAweBETAWA I MATK ¢MIKE Y
1 SCHITISCRITASLK LKAICRISSaCROSS VST aMUSTHETA (DD IMCI I MZEY

KKEND sXEND
JSIGN=]
195 G0 TO (10101020 s0S1GN
101 ZETAsGaMMA
GO TO 123
102 ZETAsGAMMASP |6
173 00 176 1wl eMp

BETAGI[1eX 1L 1)=OXIDST 11OXI11/(24040XD5L 1))
OMGAG ([ 19=DXIDSE11/02: 04X 12DOXDS 1YY
GO YO t23344135)«xBD
YLI)sBETAGC | Y ~OMGAGI [ ) #XSCIMP)

GO YO 106

335 Yi1)eBETAGLI}

106 CTONTINUE

GO TO (48048811 ¢xBO

GO TO (72C4721)¢MODE

BETAG(MPIEUL0

VMO ) 2040

Nwad

KRS0

NOMOX 50

[L-L 13}

®LASH3 ]

MARE S

NGl

334

481
720
480
21

SEARCH INWARD FOR A POINY WHERE THE LOCUS OF EXTHEMA ENTERS Tiof
FIAST QUADRANT OF ThE (OMEGAs BETA)Y PLANE: |F ONE IS FOUNDY GO TO
223s I* NOTe GO YO 204.

O3 107 Je2uMR

1swPs ey

17 (OMGAGIT)IIIOTe10Te1 1
131 IPCEvilItI0Tel0Te 02
137 CONTINVE

GO TO 224

112 INtTel
€O TO (31%:¢316)1M00E

n e
ALFAGIIIM L v o [VAZETASETAL LI ROXDSI 3/ IXILIRASUIL)II/2e0




nan

non

Page 31 Page 22

SSW (NI aSOMA
126 :;ssélz’;;um‘“.u”'-u"u.” 121 GO 1O (1184110¢119) sLEAD
119 GO TO (3424343180
316 00 317 lalemp 342 YIP=ALFAGI I (L s 0 -XSQIMPI/XSOCT T}
ALFAG(1)8DXIDSIS1+ZETASETAC] ) 2OXDSIT) /¢ 2.0%x T ) O8XS0C1)) Y2PSALFAGIT41)18(]40~XSAIMPI/XSTIL41))
Z2C11sEXPR (~BETAG( L)) GO TO 344
317 EPSG11sALFAGIEI®ZLI} 343 VIPSALFAGCT)
GO To 208 Y2PuALFAGEI41)
364 SBET ¥ SU1I+POLATE(DELTS«YIIIaviTo11eviPav2Pelel?
SSwiN)uSBET

20% DO 200 JelsINIT

InINITelay 118 GO TO (474¢ATSATS)oLEAD
IFIOMGAGL] 1120042004201 4TS I1F(SOMA~SUET 476087 TeaT7T
261 1FiY11)1230420064202 476 SSwINISSOMA
292 1F11=#)3ACeIB11IB] LEADs}
38U 1FIOMGAGITI+]12)38143B142382 GO TO aTa
382 IF(YL1011)0HL4IBT2CO 477 SSWIN)uSBET
I8 1FC(ALFAGUTIIZ2030460488C LEAD=D

200 CONTINUE ATa MONK (N} SLEAD
GO TO 2ue 1P (LEAD+KBO=S12304340+230 .
230 BRETAWINICCUBICIOELYSvBETAGI 1 1¢BETAGUI+L) s ALFAGI] } o ALFAGCI+T )

1 SSWiNI=5(1)el)

400 tO=]
DO 461 Js2410 BRETAWINISMAXIF (0.0.8BETARINY
leiDel=y GO YO 228
IFEVCT) ) A688650465 340 BAETAWIN)SUGL
A8% 1F(OMGAGIT) 468,843,480 228 GO TO (29644671 yKLASH
463 IFLALFAGII)1A62:46] 88) 487 INITSIVAR
481 CONTINVE KL ASHE)
GO TD as2 G0 TO 296
488 INITewMINUF(LemM=1) C SEARCH INWARL FOR A max(MuM [N THE LDCUS OF EXTREMAe 1F ONE 1S
GO TO 20% c FOUNDs GO TO 2116
462 KLASHI2 296 DO 215 JutelNIT
IVARAXMINOF I ] eM=]} luiNlTel=J
1210 1F (ALFAGI13121042104390
&0 YO 203 30 KTESTuaxXMINUFL1=]e3)
IF(EYESTIZ1 10211430
FIND THE LUOCATION SSwiN} IN THE NET COOROINATE SYSTEM Se 391 DO 192 KvilWKTEST
CORAESPOND ING TO THE NTH TIME THE LOCUS OF EXTREMA ENTEMS THE KZelaxy
FIRST QUADRANT. IFCALFAGIK2)I 1210421042392
392 CONTINUF
293 L=l G0 TO 211t
GO TO (2.6¢2v60a80) JMAR 210 CONTINUE
206 1w(MAR)a ] BETHeRETAG( )
IniYel SCALY*N0
NEMAR SHit180e0
LEAD®Y GO TO (2234297)¢NAC
[F(OMGAG(I+1134T7] 871 447)
471 LEAD®| < FOR ALL NET POINTS L SATIGFYING THE APPROPRIATE CONDITIONS: FIND
1Y (1411187207240 7) 4 THE POINTS SHILE IN THE NET COORJINATE SYSTEM S WMERE THE TANGENT
472 LEAD=2 c TO TWE LOCUS OF EXTHEMA AT SIL) CROSSES THE LOCUS OF EXTREMA.
4TI 1F(1=M111 7010001108
116 [F(ALFAG(MP) 129042900117 211 IRIT(M&RY=|
290 [F(OMGAGIMPI 111703334313 Nemaq
31 1Pty 111703120382 CYSDELTSHALFAGI I/ (ALFAGIT) “ALFAGITe1 1)
312 SSMINIESIMR) SXRIT(NInE 1)rsCY
MOMK EN) =2 AKRITININCUNICIDELT S BETAG I ) sBETAGE 141 ) 2ALFAGI]) ¢ALFAGI I3 1oCYe )
GO YO 11384340} .x8D XCRITEX(TI SRl )mR T} 1RALFAGIT) /7 CALFAGI 1) =4LFAGIIeL1 )Y
218 ABETAw(N) AETAGIME) 234 RKAIT(NYElausXCRLT
60 TO 228 . icCAlT=l
117 GO TO (122012205212 4LEAD 1=1CALT+]
122 SOMARS(}1ePOLATE (DELTSeOMGAG 1) ¢OMGAGEI+1)aX3Q1 1) @ALFAGI 1) 4xSO(3e1 50 133 KslelCRIT
1 1%ALFAGII41Y a6 LelCaITelan
Sacxt Page 23 IF(Ova) 138.138.218 Page 24
138 351G(1)aBETAGE I ) ~X1 (L) =OMGAG( | ) oXSO(L)
1FPSIGIT11136012360137 onGAs - 218 GO TO (29%+442 Y eMAR
136 Iatel 29% IF(IGN=1)a41 48] 4040
1FtlatwimMeRI=131380138421% 4at Oxi=x)exd
OY15¥1-CUBICIDEL I vYIevarYIPaYaAP DXL, 1)
137 [#C1-1CRIT=1123043304139 IFIOY1)14CasalbealS
330 JACk=2 404 13fe}
GO Y0 138 <LUEwKLUE el
LagHe]
139 Y12P81G(C ]I~ MASHE]
YoRRS16¢1) G TO a01
VIONALFAGUI~1)®1) ¢ JexSGILI/X5001=1)1}
Y2ORALFAGE 11 (1e0=-KSOILI XSO} 408 Dx2sX2-x%)
CS1eP0LATEIDELTS YL aY22Y10ev2PyJACK ¢ 2) Ov2ry2=CUllCIDEL3A e YI e YA YIP s YaP,OX2, 1)
323 SHILI=SEe) )9CS] . 1IF(DY21A07 80604068
SHIL)AMAXIF ISHILYSKR|T (MAR) | ’ LRI EF L
ColaSMiLIestl=1) K1 UE sxL JE+}
17 C5RIL 1 =SoWiMaR 1 I T164215:215 LASHEZ
716 GO TO (325438 eMODE NASHMY)
32% 1FeL=113274326+327 GO TO a0
326 Mo Tvoagudic YOELTSeBETLGEI=1) eUETAGET) sALFAGE1=1) e ALFAGI11oCST o))
ZILISEXPF | =ik TYL) 497 OXI=ExJaN
327 IFLALFAGIL)ILEITe137¢128 OY3ry3-CUBICIDELI2vY 1 ¢ ¥2e¥IPuv2D,0X3, 1)
217 IF(OMGAGIL ) =DMGAG(L+1))138:135,402 IFLDY3143840.9:409
409 KLUESKLVE+B
SCARCH [NWARY ALONG THE LUCUS OF EXTREMA TO FIND OUT WHETHER [T GO TO &yl
CAOSSES [TScLF IN THE FIAST QUADRANT, IF SO0+ CALCWLATE THE POINTS
CRISS AND CHOSS IN ThE WET COOROINATE SYSTEM, 135 teie)
BETHABE TYL
a2 XKLuEr s GO TO (22843011 ¢NAG
CAsmey
MASHEY 408 DvIPuyIP-CUBICIOELIZeY1+4¥2¢YiPv2F DX}
Nagma) DY4PayYaReCUBICIOELI2e¥ 1 oY2eY 1P Y20 Oxas2)
XCREPOLATE (DEL3SeDYIeLvasDYIPOYAP 4} 4)
A01 IF{MASHONASH=23453¢4%4 4483 BEIRSZUIICIDELIRIYI ¢ YA ¥YIReYAPIXCRY 1)
483 IFIKLUE=61410e8104811 445 Y1:EETAGIL J=DECR
L LI Y22DETLGIL* LI =BECK
b Ve i-2eLasu CAUSSHE(LT1+POLATLIOELTheY ] e Y2 ¢ALK A
HECRSSETACT IVY) VIeRETAGE It 1esgca otV ITRIALFAGLIMALEAGILS I a1y
30 10 ans Y2eAETAG(] Y ~uECR
CROSS*5(1=1)+PO0LATE CDELTS, Y12 Y24ALF, -
ALY WRITE QUTEUT TABE €4812¢XLUE +XEND 295 lr(cwoss-55~(uln|1715-215:215 FHALFAGHI=IIALFAS LT 101 o3
412 FOHMAT( Jor THOUBLE IN SUOWOUTING CHARGE KLUEE 182 11W ITERATION [S) 718 MaRs2
BECR® (y1ev21s2e0 NAQ®2
GO TO ass lat2yng
INETuL
410 X130MGAGIL) SSwi2i1eCRlss
YieBETAGID) GO t0 296
YiPexsgily
A2WOMGAGETI=1) 440 IGNU TGN
Y2eBETAGT=1) IR 1GN=816057,000,000
YIPeXSQi 1=l 487 MARa}
AInQMGAnLIL+ 1) N&Qe
YIeBETAGL L) INTTe
YIPan$QiLe1) 00 483 [w]np
NHASOMGAG (L Y 440 241 eEXDF [ =DETAGI 1))
YASHETAGELY GO 10 296
YaAReXSGIL) M
OELI2ex2~x1 213 GO TO (300+4a0)enAD
OfL Isexa~x JI00 LOFctMaAR ) EL
Oxeana-x) NOMOKswAR
BV DVARYACT TN [ 2e¥ ] e Y2V IR Y2PIDOKA L) INITeyL
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30 70 209

204 NysMARS)
NKRe AR = |
IPOXI 0112006228 0223

220 LINKS
GO TO {336337) kB0

336 BETHS=XT(1}/11e0/XSOIMPI=140)
GO0 TO 228

337 BETHEO.O
GO TO 228

221 LINKeS
BETHaxI{1)
6o 10 223

223 LiNKs]
NusMAR
NKREMAR~1
GO YO 22%

224 LiINK=2
NWsMAR
NRRBMAR
GO TO 225

277 LINKEY
Nwai
NRs
GO TO 223

301 LINK=8
Nusl
NKRs2
GO TO 228

22% IFINWI2264226:470
470 MACKSMONK ( NW )
MIKEZMONK T 13
NZ8 (MACK=4 ) SMACK 8
NZ2B(M[KE=4)EMIKE+S
IFEMACK=112450246020%
246 GO TO (247207440044 00,6U5¢285:287+24T79400+400) L INK
267 LINKSLTNK42
205 IF(NW=1)226422642%)
251 1F{MIKE~11226+310:226
310 IFILINC~D1800e226+311L
311 IFLLINKG-8)80022604400

400 GO TO 282

226 EXYWEXDF (=BETH)
EDY=EXY/SQTPI
1FINE=112630261+262

26t Sw=SSw¢})

SWARS (MP)I 410
BETAWCRBETAW(1)
S0 TO 285

262 SwaSSW(2)
SWARSSWilt
SETAWSBBETAW(2)

Page 27

GO TO 18C
217 wRITE OUTPUT TAPE 4281 LINK o BETH o (RKRIT(I)eIKRITIII 10 ] JNKRY
241 FORMATION LINKRI2.60 ULTH2IPE124Se {7 RTRAPHIPEIZSeTH BTRAPS

1 1PE1249Y)

GO TO 168

180 GO TO (170e170173¢1732175¢175:308¢3280308+308) 31 INK
171 CaALL Fl@sT
GO TQ vOQQ
173 CaLL SECOND
G2 10 700
173 CALL TWiRD
GO TO T00
308 TALL FOURTH
60 TO 70U

T35 GO TO (70 eTu2)edSIGN

701 DO 733 {m)emp
T8 ETAPS([)aRNOLI
¥YPOS=vSY
IFCMZET=1)171347130714
713 JSIGNe2
SMIFTsep(6
D0 TO6 1sleMP
XEATYaxI(TIeSHIFTY
DXIDST1 1 mDXIVSITIeSHIFT
708 ETALL)eagETALT)
GO 10 108

702 00 710 Iw)emp

TIO ETANG(]}oRMOCT}
YNEGRYST
00 712 Ye)emp
ALCTYOXICba/SmieY
Ox1DS(11uDXI08L 1} /SHIFY

T2 ETALIInaETAIL}

TiA RETURN
END

Puge 28

SETawscdugTawil)
GO D (374:200+37R) BACK

378
s
e

G0 1O (I7B.209:209) MIKE
IF(SETAVASET o) 268.265:376
OEToweBETAWA

GO TO 208

I
373
m

GO TO 1282937343731 MIKE

1F (BETAWBETANA) 205,2654371
BETAWSSETAVA

GO TO 263

28% GO TO 12601267:266:267:267287:303:308430343081 +L 1K
SCRITwDO

1P (NKR=112704¢ 2844282

SCRITAGSKAIT(1)

Go TO 270

I (NKR=1128502064287

19 (L INK=5)1 28212709270

SCRITeSKRIT(1)

Go 10 270

SCRITaSKRITIZ)

SCRITASSKRITES)

6o To 270

266
281
267

288
288

303
308

I® (NKR=1)2824+308+282
SCRITw0.0
SCRITASSKRITE)

GO TO 278

15 (NKR=21282¢3064202
SCRITESKRITI(2}
SCRITASSKRITEL}

G0 10 2718

304
306

282 WRITE OUTPUT TAPE B42834KEND 3 JSIGN oL ENK o Pl aNKR ¢MACK s MIKE o 1GNo
1 SCRIT«SCRITA

283 FORMAT (%24 TROUBLE IN SUBROUTINE CMARGE. EXECUTION TERMINATED
1 164714 1P2E12:5 )
SENSE LIGHT 1
SENSE LIGHT 2
RETURN

273 IF(NOMOK=112T14272:27)
271 LKaMPe]
GO YO 278

" 272 (xmOFRILY

LKAsMPe]
GO 10 278
273 LKL OfK(2)
LKASLOFKI] )
GO TO 273

278 KT T
IF(Ian=1144604064447

447 WRITE OUTPUT TAPE 6423484 16NeJISIGNIREND

488 FORMAT( 334 LOCUS OF t XTREMA CROSSES [TSELF 134194 TIMES DURING PAR
1T 12e14m OF ITERATION IS)

64t GO TJ (18501651564 15614xT]

186 I#(NKR) 23602364237

238 WRITE OUYPUT TAPE 64280.LINKIBETAGI L)

240 FORMAT(OMN LINKS124120  BETAGI1101PT1248)

Page 28
FUNCTION CUBICIDELTLeY1oV2eV1P V2P eCSTINY

IF Nxle THIS SUBPROGRAM FINOS v FOR X ® Chle ASSUMING THAT v IS A
TUBIC WITH Y = Y1 AND SLUPE % YIP AT K ® O AND Y 5 Y2 AND SLOPE
¥2P AT X s DELTSs [F Ne2e THE DERIVATIVE OF v AT x = CS51 IS
CALOCULATED.

onnn

Am(2el8ty2=Y11=DELTS#I 2,08V Pev2P ) 1/DELTS082
B (DELTSEIYIPeY2P)I=2,08(Y2=Y )11 /DELTSESY

GO TO (13slldeN

1o TuUBLICevIelSIeivIPICSI®(ALCSIen))
RETURN

11 “USICavIPeCSI8(2e00A0CS 230008
RETURN
END

cusic




ceone

ena

anrcrnn
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FoCTIOn PULATEIOELTSs Y er20vIPev2Pe i ¥ o0k SOLaTE
GOLATE SENLWATC, & Coirll alTe vav] AND LLOPESYE AT ulayuy AND vaY2
ANE SLIPF YRR LT mGEcECt e 1T T e LSt NENYONS Me THOL YO FIn A
WOOT IN TML IRTERVAL ( a0t LT I JAeslae [N THE INTERVAL
C=DFLTSe 1 1F Jalwe2e
JIMENSTON Ltd)
GIMONSICN K8 1 aaSLie. L1eatdliteuwky (4u]l)aR0RPI1401)1¢550T(ACY)
1I00Kta b vl (e Jialalate et Tuta e TaRsiauL ) sETANG (401 e
2 QrO1a Il elMLAGTA e Truldul ) s ALFAsla0l 1 ePLlGIalL ) iLPIGIAGLY Y
3 Yta.))e2ta lieanial
COMYUN KoK we5aoXubemib o LLoToutim e kLo lXISLaETael TAP eI TANG SR ¢
1 0WCAGeE T ALed FhLaPSl LaEPLoeveZ e 1
TOMMON PlaGLaTRlev il e sAVeMDIIE oA MR SELT LeGAMMA WP [ 34Pi6P170YP05,
1 YNCLenPRINY o< T e TOulLomENS
COMMIn LINK G OE TR D XY QE DY o s NF2eNae AVOE Taw o SEYhwl e MaCK e MIKE s
[BRSL TR PR L PRIV EENSS UPET ISR 24 PTRETA KIS VMC L MTE
G rBerALFAGLn)
DIAPBIRS TN
SJPEaY (k)
DAELTSRIELTY
Uvravy
ovesvy2
Jvipzvie
M FLTE k-]
JUACK = gATK
J20E= 08
CTFOTaDELTHOFLIATF (LiCr=1)
S0 TS (356 460 eJalr
A IFIYL vIR) 37436438
VT IR UYF/Y 2P S e 36236
IE LR PP L TRT-TS LY
I ANzeYILVIE
33 70 &1
83 ANIDELTS-v2/v2P
@l IFIXNYI6aIBeL2
a2 IFICELTS=XN) 363627
36 XANIDELTIEVI/LYI=v2)
IFtYiev2)151017e81
31 IFIXN4CTEST 1025426
25 00 TO (254271 004CK
26 IFIXNOCTEST=0EL.TS12742 142
24 WRITE OUTPUT TAPE 6414.DELTSeYisY2ev[DeY2R XN JACK ¢ JOE
14 FORMAT(16M POLATE TROUNLEWIPGELZ2e5e213)
POLATERMAX[F (= e SODELTSeMINIF (XNe ( 1 aB=20#FLOATE { JACK -1 } }#DELTS) )
RTTYRIIN
27 X32xN
D0 1lv I=lelv
D0 %3 Jele2
MO Elunlo e toeY o Y2 YER e YRRINS 0 )
XTax5-2(1172¢2)
13 IFLA3SFINS=ATI1/70ELTS=1acE =050 15415010
tu XGax?t
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SUBROUT INE CH¢ 40N CHAMON
SUBROUT INE CHAMON CARRIES OuT & JOMPUTATION ANALOGOUS TO THAT OF
GUHROUT INE CHARGE I THE CASE OF SIMBLIFIED PARTICLE DISTRIBUTIONS.
a5 FOLLOwWSe
MIDE2 = ATTWLCTED PuRYICLE 5> Mdew=t NERGETICS
M_oOI3 = GAME AL MULUE2 FOW ATTHALTLD SPe.liSe RubPulitu PARTICLE
DENGITY DRGCRIMED Y JOLTIMANN FASTuRe
MCme = ATTWALTED PARTILLLL AT ZHidd TNCHGYe CYLINDRICAL PROBE ONLY
MIDEH = 3AML Ay MCO=e FOR ATTRAITED »PnlliSe SAME A% WCD=) FOR
REPELLLL SPLLLESS
IF MES 2 4 TR Be THER S mROUTING MURT 20 RUN wiTh K02 AND MODEs2
DIMEN 17N UVILAt21a " al21exat2)eRAL2)Y
DIMENSTON X4Aul)ax5GIa. 11450821 0a0XD51421)sROP(401)1¢5COT(a01)
1 CO0XIAIN eXi{a, ] ) alXIG14ul el Tatull1eltaPS(AL1T eZTANGI401 1o
2 AHOTAIIIeOM" t8 B a Al Tu (el ainb astal] ) eP3lula0114EPSGIA01)
3 YtaldldeZtas  eSmiALL)
COMMON X aX e e UXCSeHUP e LT I0K XL a0R 10565 TALTARS oL TANG o RHO 0
1 IMGAGYUETHUsALF AGePLLLeEPSa e Y e e okt
COMMON B abuTPLavIP LAY aMODL s 9RO LTS 1GAMMA WP 1 3eR 6P| T+ VPOS
b OYNTGaNPAUINT oXTLanT 2ol Le%CNY
ZOMMON LINKSCF THDXYsEDYeND aIN22aNa 05w AV OETA N BETAWA s MACK sMIKE s
1 SCRITGCRITAWKILRAICRIGNACRO T eV aTeA MU THE YA oKD AL L e MZET
<END 2KEND
IF(KENDIID 94014220
4 GO TO [IIVea ae80B0%5214582) ¢MCL
46 WRITE QUTPUT TAPE 6.4l0
426 FORMATIBOXIAHATTRACTLD PARTICLES AONO-LNERGEYLIC)

G0 TO (335536} MOLE .

4% WRITE OQUTPUT TAPE 64407

a"? FORMAT (QaXTONATTRACTLL DAR']CLESvﬂONO-iNEHGEYICn FROBE OOES NOT AB
150R8 REPCLLLY PARTICLES)
GO TO (BINeRI6) eMOLE

%1% CNGraeO/P) '
SONGESQRTF(ENG)
GO YO 330

536 ENGAPL/A0Y .
60 TO 333

821 WRITC OUTPUT TABE 8,92)

823 VORMATIBOXIAHATTRACTED PARTICLCS AT IERO ENERGY)
ENGS Y43
G0 YO N0

82e WRITE OUTPUT TAPE 64324

824 FOAMAT( 44X 7TOMATYRACTED PARTICLES AT 20RO ENERGY. PROBE DOES NOT AB
150R REPELLED PAMTICLES)
ENGS W0
G0 YO 330

o

330 IFIPINIAR243204329

3

<

BETHEX] (1)
EXYSERPF (=HETHI
Coverxy/s3QTPl
CALL THIRD

207
202
413
250
601
82

600

203

“1s

833

»

[ 1]

[ B

o

L [-5]
“7
a9

19 1PIRToCTESTIDN 031032
31 GO TO 117421t eJACK
32 IPIATECTEST=DELTSIIAe )

2) POLATES =04 99902ELTS
RETURN

17 POLATEsXN
RETURN

%4 POLATERXT
RETURN
END

GO TO asa Poge 22
00 106 iulemp
BETAGCI ) aX 1 (1)=DXIDS¢ ] )1#X(1)/(2.080X08¢ 1))
OMGAG( 1) e=0X1DS(1)/7824C8Xt1)ROXOS(11 )

GO TQ (305+506) +xBD
YII)IaBETAG L) ~OMGAG L] ) #XS5Q{ME)

GO TO 128

Y11 aBETAGI )

SONY InuE

GO TO (3153181 ¢MODE

00 128 laleMP
ALFAG(L 1o (DXIDS( 1) +GAMMASETA( 1)8DXOSE1IZ (XTI 1RXSUIL 1) 1/240
%0 TO 17

D0 17 IsieMP
ALFAG(])aDXIOS{T ) 4GAMMARETA (1) SDXDSI 11/ (2408X( {18XSQ(TY)
GO TO 1Z})

NKRBO
INITaMm
TFCINET)I20442044208

00 690 vsleiINntT
L2INITe1=y

1P (OMGAGI ! 1120042004207
JLARSRERY BOTY B2 IV
1F(BETAGEL ) «ENG) 20042004413
IFIBETAG(I+1)=ENGI 20142014200

IF{OMGAG{1)18004800+001
1M (OMGAGI 1411 1622:4024600
IF(BETAGL)I=ENGIBU0460C,

CONT INuE
G0 TO 20a

NCRENKR |

INITela2

G0 TOta 41808100 1NKR
FRARIENG=BETAGL 14111 /7(BETAGLL ) =BETAGILe)))
OMZIGA(NKRINOMGAG 141 )4 (OMGAZL ] 1=OMGAGL L)) aPRA
GO YO 403

NKRENKRS | ‘'

INITole2

GO TO (604¢6U1018) NI
FRA®<OMGAGLI+11/(OMGAG( | ) =0MGAZI1¢1))
OMEGA INKR) 8V 0

G0 YO 608

SSHINKRIagI}el)eiStI=0Ciol ) ) OPRA
XWOHKRIOXT 61 tRII =Nt 141 ) 1OFRA
Ry (KR ) ) o U/ ENKRY

G0 TO (RROIBUO) oxUC
SLeENG/XSAIMP)

IF{OMEGA INKR)=3L 18004 500+801

G0 TO (2081417) ekl
iFIOMEGA L] 1=OMEGACR) 18194010
NicRa |




Poge 3
@ ro

01 xRet |
6@ 10 208

416 WATTE OQUTPUT TARE &.208
208 FORMAT {887 LOCUS OF MAKIMA AFFECTS COMPUTATION AT TMHEL OR MOAE L
10CATIONS e EXELUTION TEAMINATED)
SENSE LIGHT |
AENSE L IGNT 2
RETURN

i, ]

204 NTRARey
482 INDYRINITe
0O 483 JelsinOY
TeINOYe1ay ,
IFCALFAG(1)1AB 08,004
484 IFIALZAG(|+11)485,:405.48)
AB3 I1FIBETAGIT1)541:541 540
Bal IF{BETAGII+1)1483:4834540
483 CONTINUE
GO 10 481

840 NTRAPW2
CYSDELTYSELFAGII )/ CALFAGIII=ALFAGt1aY)}
BTRAP » CUNICIDELTSeBLTAGI LI oBETASI1#) ) ALFAGI] ) oALFAG(I4])eCYal )}
XTQAPSX | 1)+ IX(Io13mXl [ )BALFAGIL I /{ALFAGLT 1 =ALFAGT 1+11})
RTAAP ] (O/XTRAP

GO T2 aBt
481 PLEENG-XT(1)

1P INKR) 489480850
489 Omanm

GO0 TO a9l

Q90 OMASMINIF (OMEGA INKR ) ¢PL )
49) OMASMAKIFIOMAIOLO01
G0 YO (S07¢3UM) oXKD .
BIT U SENG/RSIIMR)
QuAsMiniF (OMASL ) N

930 XTiexy,
GO YO 1183010001860 1%014xT|

196 (P INKR) 23092364237

236 wOITE QUTBUT TAPE $.241 ¢PLoSLedETAGE) )

241 FORMATY (AW PLoIPEL1casan SLu1PEI] s UETAGLLY
1 (3 A 1PCLlencbot OMEGA IPEL1ea V)
GO TO (16::887) eNTRAP

247 WRITE QUTPUT TAPL 44241 4PLoSLABETAGE] Ho(Rwil)eOMEGATE belu) eAKR)
GO TO (16L+1487) sNTRAP

1P€11eas

48T WRTE QUTPUT YABE 4.488.RTRAPATRAR
AR8 FOAMAT{ TENAN ATRAPIRE14;7+0M BTRARSIDE 60T
40 YO 80

160 DO 420 Lt
Ll
RLe(ENG=XTIL) 1/XSQLIL)
P INKR= | YAZTc 022002

S22 1FISIL)I=SSWE) ) IA240001442)
A24 QMBEMINIFIOL OWEGAL ]

Pi 3
GO YO e20 g

431 GO TO (434¢48%)M0DE

488 ANO(LY
GO 10 o

43% RROIL) o 0a9
GO TO a20

® VeIeSQRTF LENG=X1 (L)) /SONG
20

420 CONTINUE
GO TO (436+437).m00E

436 VST €0,5030TPI40MA/SONG
Go YO 12t

497 1FEMCD~319I0e810+931

B30 YST u2,00SAYNSOATF (OMA}
@0 T0 32

B3 YSTE2,03AYSS0ATF (OMASS[§)
80 TO 32

321 IP(PI314%9843220322

498 DO 323 teiimp

323 ETAPS(1)eANOI )
YPOSeYSY
(P (MZEY=1133143314332

331 00 326 Is1eme
Xitlinaxtelromie
OXIDS I )eaOXEOSC )0

IR0 ETALIIumgTALL)
IFi{P13) 32304080402

323 BETHEXL )Y
EXYOERDF (BT TH)
EDYeENY/3QTHL
CALL TeiRD
a0 10 22

322 00 J27 feteip

327 ETANGIL }eRMO(])
YNEGeYST §
00 328 jstemp
X{tlranxicids Ple 4
OXIDS( ! )e=ONIDStT I/ g

320 ETAL()nagTAll)

332 RETURN
L]

nananonn

Page M

0 70 a3

ARY IFISILI=SSUIR)IIARS 422,022
AS OMBSMINIT M. JOMGAI2) }
0 10”e30

430 OMBaMAX|F(OMB0501

GO YO (3103111400
S10 QUBAMINIFLOMS¢SL )
S11 17 (OMA=OMB 14314324433

433 WRITE OUTPUT TADE 6.480.0MA+OMBLL +RL sNKR 4 KEND
480 FORMAT(2TH OMA GREATER THAN OMtis OMASIPE14«7+3% oua-wzun-u Lise
1 14+4H RLOIPELA47)54 NKRe12:6M4 KENDL4)
OMAROMY
GO TO al2

431 IFINMAIAIA88443%

436 1FI0MU- . 183604374437

436 GO TO (4384439} MO0E

438 AMOIL) = (SARTFIENG=XT (L} 1=SARTF{XSOILIS(RL=0M8))) /SONG
63 YO a20

439 RHO(L) » 2,C8yIP|eAT. .+  JORTF {OMB/(QL-OMB)) )
GO YO a2

437 GO TO (0404441} M00E

440 AHOIL) » SORTFIENG=X] (L) )/SANG
GO TO 20
441 AMOiL)Y =
GO TO 420

te0

438 [FIOMB=RL1442:4843:44)
442 GO TO (484,:843)¢MO0E
448 RHOTL) 81028 ILORTFIENGaX] (L)1) *SARTH (XKSOLL IS (AL=0MA} I}
1 =SORTFINIOILIT(RL=ONA)} }/30NG
G0 T0 a20
449 RHOIL) » VIPLO{RqUOATANS |SORTF (OMB/ (AL =OME) ) 1=ATANT LSDATF(OMAZ {BL~
I OMAY YY)
GO YO 420

443 GO TO (448.447) sMODE

440 RHOIL)Y 8(Q0eBRISOATF (ENG=XI (L) I14SORTFINSQAILIOCRL=OMA) 1)1 /8ONG
G0 Y0 420

S47 BHOIL)Y 8 1e0=VIPIOATANF [SORTF IS/ {ALSOMAYY }
GO 1O 20

IF(OMAL 4488490445

048 AHOILY = 0O
G0 TO 420

HALLLEL ST T LIFYL Y
410 GO TO (452,4%)),M00C

492 AMOIL) 10 AEIS00TF (ENG=X] (L1 ) =S0RTF(KSQIL) IRL~0WA ) }) /SONG
GO YO a2¢
493 HHO(L) & VIPISATANG (SORTFIOMA/ (HL=0MS1})
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FUNCTION CALTUACK ¢ SACSBINLINS) CaL
IF Niel, INTEGRATION STANTS ON A NET POINT
1" Nl INTEGRATION MAY START OFF & NEY POINT
1F N1s3e INTEGRATION MAY STARY OFF 4 M.t POINT AND [NTEGRAND

BECOMES IMAGINARY OQUTSIUE LIMIT OF INTEGRATION.
SIMILARLY FON N2e
IF JACKkE]l THEN CONTRIBUTION 1S TO CHARGE DENSITY
17 JACke2 THEN CONTRINUTION 18 TO COLLECTED CURRENT
84 AND SH ARL LIM|TS OF INTEGRATION

OIMENLION X(401) (XSALAO112S1431140XI%1401 1 0R0P (0] 1s5COT(a01)

1 COOKIACIIoXLINQL1eDRIOSIA1I¢ETACAD1IIETAPS{40) PAETANG (401 ) s
2 OHO(A0] ) eOMGAGIAUL1eUETAGLADT I sALFAGIA0T } oPST1GLIAG) (X1 L 21PN TR

3 YUA01)eZ(aU1 12 IHIA0L)

COMMON X eR50¢S10K0S (MO 4 5CUT eCOUR X1 eONIDSIETAJETAUS (LT ANG eRHO o

1 OMGAGIUETALALF ALIPS [GiLPa0IY el o an

COMMON ’l-SGT’Ivvll’llSl"m\)tt"“-utL’:'blﬂl-Vllo'l&l’l’."ﬂhl
1 YNEGNPRINT 4KTL oxT2eL L eREND

COMMON L INK sETHOEXYSEOYaNZ sN22 e NU s SW e SWA IBETAWsIE TAWA s MACK s MTKCE ¢«
1 SCAITISCRITAWLNLRAICHISSICAC .51 YST shmys THETA «KBO JMCD

SUMe040

JJIACKm JACK

DSAssa

DSBnss

L 3L L}
388 MNNZ2ON2

GO TO (38%5+386)+MO0E
388 NN OXMINOP (NT o)

NNZORMINOP (NNR )

383 GO YO (201420292031 0]
20L iA=SA/DELTSH)e!

taxspa

6o YO 208
1ASA/DELTS ¢ 40
TAXSKMANOF { [Aulo])

Go To 208
1A9S4/DELYS2240

1axe A

GO To 208

202

203

273 GO TO (200.207+208) NN
2U8 189SH/DELTS+ Ll
i1oxe(s

G0 to 210
18eS8/DELYS+240
1BXOXMINOR { Dol youm)
a0 YO 210
1BeSH/0ELTS4140
iax=ie

@0 To 210

GO TO (211+228)¢JACK

20

~

210
211 00 212 IstAxetdX

I (a2 22102000221
PSIGC1)eBETAGE I )Xl (LL I ~OMBAG (1) OXSAILL)
IP(PSIGIII PRI IR 2l

213
216 IFtSB-511))218+21Te217

21T 1P (MUXX=KEND=113200321 4320



”
320 1P (MABYF (1=l 1=833210321033)
321 xCAJoxCAJe]
GO T0 222
35) WRITE QUTPUT TARPE ©e2100) sl ePSIGE 1) exlAIIXEND
218 FORMAT(I9M BETAS vS OMGAG CROSSES 175 TANGENT 1o IJeaM LLO1De
1 9 PSIGIE)s 1PE1#eTebe KCASRIA6M KENDSTS)
MANX =KEND® |
KCAJuD
GO TO 222

215 GO TO (292e2%3) ¢MOVE
290 Y{IIa=EPSHL]) #SURTFL=P51GII )
GO TO 212

222 PSIGL1)=Q4C

GO TO !3I5-293)0H00§
38 YU1)904D

GO TO 212

214 GO TO (29242931 +MODE

292 Y(1)1sEPSG(1)2#SORTFIPSIGIIY)
G0 TO 212

293 IF(OMGAG(1)1E964313+294

294 QTP ZATANE ( 5URTF LABSF (PSIGII )/ (XSuiLL)#OMGAGIT D)
vllllSlGNF(l-UGOMuAhll)I'tﬂsﬁ(l)0(l.570796J‘SIGNF(OTPI.PSlG(Il)l
GO TO 212

212 CONTINUE
GO TO 230

22% GO TO (2964297} +MODE

296 DO 226 lxliXelax
226 Y(1)2EPSG( |} #OMGAGILY
GO TO 230

297 00 310 lslaxelux
3ty 'll)'SIGNFII-Q-OMbAGlI)l';?bﬁ(l)liGRTF(A:SF(OMGAGII))!
GO YO 230

230 MiIKYs}
ARINA®OeD
ARINBs0eC
GO TO {231+2320233)4NN1

231 YAsvila)
AREAASD SO
GO TO 234

232 P C1BX=1A=1)360436Ue326

36y IF{1BX=141325:22%,362

362 1F(1A-1AX)329032%¢363

32% Yawy(lare(VilA®l)oY(1A)IR(SA=S(1A)I/DELTS
AGEAASIS(IA+LI=SAIRIYASYLIAG]))83eS
Go vO 327

363 CS1s(SA=SUIA)I/DELTS
CTARO ®#{Y(}Asl)=YLIA=]))
CTEaVS#IYiJAsLIeYI A 2=V A)
YASY(IA)4CSIRICTACCSIRCTEY
AREAAIDELTSO(VIlAl'(lcU'LSIIQCT!IZ.O.IloO-CSIO'l)’CTB/J.O'(IIO'CS'
1 ®=e3y)
GO TO 327

326 CSIm(5A~S5(1A¢1)I1/DELTS
CTARUSeIYLIAe2)Y(]1A))
CTBR BV (IAS2)I4YLIL) )=V IAeL)
YARY(RA+114LSIP(CTALE JHCTD)
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GO TO 247 e

247 SUMBUL0
GO TO 278

268 1F(1aX=18)370¢3714371

370 1lvals
GO TO 378

371 IFC18X=1A) 37203724373

372 1vela

378 ClasUsS#(v(Iveliavilvel))
C100eBRtYLiVelieviivaliaviiv)
CS13a{SA=SCIV)I/DELTS
CS12=18BeS1IVII/DELTS
SUMSDELTS®IY(IVISICSI2=CSI1I8CTA/ L 00ICS12002-C811082)4CT0/300%¢
L owol28e3-CSI1ee3))
GO YO 278

372 SUME(YAeYDI#($B=542/240
G0 TO 273

242 SUMRARE AA+AREAC
60 To 275 '

243 SUM2AREAASARE AD
IR (1B=1a=2}12%1 2681426}
251 GO TO (3458434643471 MIKY
345 SUMSSUMS0LU#LY{TAI+YC[R)ISUELTS
GO TO 273
346 SUMSSUMOAR |NA+AR INE
60 TO 278
347 SUMBSUMSCeBE{ARINASAR ING}
GO TO 278

261 NUMs 1B=]A
I INUMI 13I8+ 3334340
340 [F(NUM=S)I38+339,333

332 SUMSSUMS IV TAISAeUBY(IB=1)4Y(B))DELTS/Ded
GO YO 278

313 SUMaSUMEIYETAISYIIBI4D,08(Y( 1ASL 1oV (1u=1)))C0ELTSE0«ITS
40 10 278

334 SUMSSUMS (9e08(YEIAIOYIIB) 1e2Bs00LY( 1AL IV (18=1) 1 0R2e0¥YLIN=2))®
| DELTS/2440
@0 T0 278

338 SUMBSUMS (900 LY LLAISY CIBI 1428 O IV IASIIoviIB=1)1¢RI000 VI 1AGR IOV
1 18=2)1)80ELTS/2440
IFINUM=B)I2T73:278,

336 1APuiA]

109e19=)

STAN0 0

0O 337 lslakc10P
33T STAsgTASYLD)

SUMBSUNSTASDELTS
278 G0 TO (27127R)oJACK
271 GO TO 130043V11eM0DK
300 CALe=JUN/SQTH!

RETURN
301 CALs=guN/R|

Page N

~CSIOITI180)1eCE10ICTAZRIOICEIOCTS/ 35011000 TS

ARINARCY(1Ael 1¢CTA/2e04CTE/ 30010001 TS

MiKYemiRYe|
327 JAulAel

GO TO 23e
233 YAad,0

AREAAS(S{1A)I~SAIOY (1A} #0¢3

GO TO 234

238 GO TO (23642374238) yNN2

236 ve=v{i®)
AREAB=040
GO YO 239

237 IF(1B~1AX~11365:369:242

389 1F(1ax~18)341+341+365

365 1F{IB=1aX)138)0341.366

3a1 YBeY[B=1 ) +(Y(IB)=Y{[E=1) )#{SB=S1 18=1))/0ELTS
AREAB®(SO=S(IB=1)1#(Y(1B8~11¢YBIN0aS
G0 TO 243

386 C518(SB=S(181)/DELTS
CTARO oBR (Y ({|B+L)=Y(iG=1)}
CTR=0.8%(v(lael)evi[a=11I-YIO)
YaeY ([ 1+CSIN(CTALCSISCTE)
AHEAHIDELTS.(V(lSl'(CSItloalOCYl/ZnOQ(CSIOQZ°I-O)OCTB/JOOQlCSl'OJ
1 ¢ted)
G0 TO D

342 CSIs{SAS138-1))/DELTS
CTa204Se(Y(ID)=Y({D=2))
CTBRO S8 LY (IB)4Y{10=2))1=V(IB~})
YOy {[B-1)14CSIICTA4CSI8LTEY
AREADSCSIRIY{I0=1)1+CSI®{CTA/2004CS14CTE/D,0) 1ROELTS
ARINBR{Y{IB=11=CTA/220¢CTE/ 30 PDELTS
MIKYYMIKY+]

342 18s18-)
G0 TO 239

238 vamGad
AREAB=(SB~S5(18) )8V (Ic180S
GO 7o 239

239 IF(13-1A12814202:24)

247 IFIS0-5A)248,287,248

246 [SASSA/DELTS
158e58/70ELTS
1F(1SB=15A1202:2060282

286 17 INXXX=KEND=] ) 353+ 356335
TG NNNSNNNGL
GO TQ 247
388 WRITE OUTPUT TADE 6:1209¢SA¢SBILLIKENDSNNN
2649 FORMATIIIN S0 A LITILE SMALLER THAN SAe SAs IAZ14sTean SUEIPEIAe Ty
1 OM LLe 1300 KENDe 18e5H NNNS (A}
NXXXBKEND+ |
NNNEO
G0 TO 247

282 1R (LXNX=KEND~])IS]1+3504351
380 RXKeKKK+1
GO TO 247
251 WRITE OUTPUT TAPE 9¢204¢58¢Scebll s KEND eRRK
284 FORMATIIZN 50 1S MUCH SMALLER THAN SAe SASIPELSe7i8H SBCIPEI4sTs
1 &k LLST3e8N KENDS 8031 KKKS[4)
LXXXSKENDS |
[LILE]

RETUAN Page 40

272 GO YO 130243u3) s MODF
302 CALS=3UM
RETURN
303 CALe=SUMBR,U/S0TR]
RETURN

REASON FOR NEGATIVE SIGNS IN STATEMENTS 300 TO 303 IS Trat
INTEGRATION ALONG S IS IN OPPOSITE SENSE TO INTRGRATION ALONG BETA

END




DRERT TR PN

noAnNG nonn

nonan

Page 41
PUNCTION CORFTIEXS

COEFTI(ER) ® Oof @ ACOT OF P| @ EXPF(EXSEX) 9 (1e0-KAF(EX}Y
ERFLEN) w 20070007 OF Pi & INTEGRAL FROM O TO EX OF EXPFi=TST)ISOT
APPROXIMATION USED FOR LAF(EX) IS GIVEM ON PAGE 169 G¥ HASTINGS
(REPe 1T)e

THIS SUSEROGRAM GIVES A RESULT wniCH MAS A RELATIVE ACCURACY OF
00002 OR BETTER. CEPENDING ON ARGUMENT e

1P EX 1S LESS THAN 2e21¢ HASTINGS APPROXIMATION IS USED.
OTHERWISEs ASYMPTOTIC SERIES IS USED.

Ir EX 1S BETWEEN 1472 AND Z482¢ A CORRECTION TERM S ADOED.

OEXsEX

IFLEX=10721924901)
9 CORT=040

G TO 19

11 IF(EX=2082)13+10410
10 SUMR0,.S/EX
TERM=SUM
PROUS=2¢ OEXT R
DO 12 N=1.80
TERMO=TERM
TERMa TERMAIFLOATF (2#N=] ) /PROD
1P (ABSKF (TEQM) -ABSF { TERMO) 1404001
#0 SAMESUMSTERM
IF(SUM=SAM) 12¢16012
12 SuMesSaM
41 SUMISUN=0SETERMO
16 COEFTusSUM
RETUAN

13 IF(EX=202112002142)
20 CORTA{EX~]eT72)8(=a00000804~000008920#(EX=1472))

1S QAx1+0/(120+e32750) 1#EX)
99 COEFTECORTHLI( (29806460 740A=142878225) QA+ 14259095] ) ®0A=,25212867)
1 *0A+.2298360%) 904
RETURM

21 VIN®UeS8/EX
VaVIN/EX
IF{EX~2434512%5¢26426

2% CENTAT2,8
CORT8-g000UIAD1+(EX~2¢20)#{=e000306A0+:00188T00#(EX~20208))
G0 YO 30

26 IFIEX=2e55)27428428

27 CENT»948,-V85197.8
CORTa=g 00000 9T+ (EX=2¢44)8(400017400~e00087900% (EX~2048))
GO YO 30

28 IF(EX~2:738129:31431

29 CENTR948,-va{103954=Ve6T567453)
CORTS 4000000804 (EX=2464)8(=s000083704+000290008(EX~2e84))
60 Y0 30

31 CENT2943,-VEI1039%4=Ve1135198+=v#1013512,3))
CORT=e000026300 (EX~2482)

30 COEFTECORTH(LII(=CENTOVHIUBIU I #Y=18,0)8Vve3:0)0V=140)0V4ia0)eVIN
RETURN
.-
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SUBROUT INE SECOND ' seconp

SPMERE

THIS SUBROUT INE COMPUTES CHARGE DENSITY RMO(LeMP) AND COLLECTED
CURRENT YST¢ FOR A SPHERICAL PROBEs UNDER THE FOLLOWING
COND | T PONGe

LOCUS OF EXTHEMA ENTLHS FIRST QUADRANT dY CROSSING BETA AXISe AND
DOES NOT CROSS ITSELF IN THIS QUAURANTs LINC & 3 OR 4e

DIMENSION Xi801)eXS0(40))¢514011¢0XDS(401)sROPIAT1) ¢ LO0TI401)
1 COOK(401)eX1(801)4DH1DSI401)+ETATA0]) eETARS(A01 ) (ETANG(A01)
2 RHOCA0) 1 1OMGAGIRUL 11 BETAGIATL) vALFAGIA0] ) aPSIGIA01 ) 1 EPSGLA0L) v
3 YLAQL) +Z(AC ) eSH(ADL)
COMMON XoXSUeS¢DXDSIROP s 5COT s COMK X JOXIDSIETAIETARSIETANG 1RAD S
1 OMGAGIBETAGYALFAGIPSI1GIEPSGeYeZ oSN
COMMON Pl eSOTPIoVIP{eSAYIMODE ¢McMP ¢DELTSsGAMMA 2 | 1aPL &P
1 YNEGINORINT X T]aXT2eLLiKEND
COMMON L INKSETHIEXY1LOYINS INZ2 eNW e S0/ WA BETANsBETANA I MACK «MIKE Y
L SCRITHSCRITALKLRAICRISNSICROSS+YS” oAMY - THETA +xB0
GO TO (171472)eMODE
T2 WRITE QUTRUT TARE @472

73 FOQMAT(AGHMO WRONG SUDROUTINES BEING USEDs EXXCUTION DELETED )
CALL EXIT

171 GO TO {173:565)«Nw

B65 GO TO (58841730 173) MIKE

S48 EMAASERIW | =HETAwA) /8QTP]

172 EMACEXPP («HETAW} /SQTPL
NIl INK=2
DO %40 Lulemd
(S (%
RAMO L I *OUO (BETHAEDY )
IFISIL)=3WID612861 4538

BAl RHO(L)BRNOLL ) *UNOLHETAWEME)
EFESIL)=SHE111343:8480540

444 AHOIL)IMRHOIL I 4CALE 1 oSHIL1)oStLISNI () =CALILsSiL)+Smels2)
30 YO 840

843 RHO(L)ISRHOIL I oCAL( 1 +SHEL) eSWeRe2)
IPISILI=SCRIT IS8 3460546

549 RHOIL ) CR=O(LI=2000CAL {1 oS8RI a5HE 1) e 302D
40 TO 860

840 RHO(LISRHOL) =2e00CAL (1 oSILI eSHIT ) s la2)
G0 YO sS40

YPOS,

836 RNOILISAMO (L) “UNOIBETAWEMA) SCAL C La g (1) agWeNl )
GO TO (340:549) Ny

248 IFixlILIBIB0I749)7

837 RHOILIURMO IL ) 4ERPF (=X (L)}
an TO 840

938 RHO(LISARO LI 422 GBUNDI040e84Y =24 08TRE1040)
60 YO %40

549 GO TO (980+356+384) NixkE

850 (F(L-LKIBITe3IT79882

BO2 IFISIL)=SWAISBI 148548

B85 ANOILISAMO(L+2.08UNO(BET AwA s EMAL )
G0 1O 88s

996 1P (L=\X1540,540.837

997 H(SILI=3waIS88:838,4330

A58 MO IL I eRROIL) 20 OSUNO UL SAY 1 =20 Q8 THE 1040 ) PR QO TRE(BETAWA)
40 7O 43é

894 IPISILI=ICRITAISRG SED.028

nnnnn
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SUBROYT .

Ing FinsY et
THIS SUSROUT INE COMPUTES CHARGE OENSITY AMO(1-MP) AND CoLLECTRD
CURRENT YSTs FOR A SPHERICAL PROSE, UNDER TWE FOLLOWING
CONDITIONS
LOCUS OF EXTRZMA ENTERS FIRST QUADRANT DY CROSSING OMEGA AX1Se ANO
DOES NOT CROSS ITSELF [N THIS QUADRANTe LINK & | OR 2

DIMENSION X(401!¢XSOL40))e5(401)1OXDS(4011+ROP1£01)+8COT(A1 ).
1 COOXK (A0 oX1 (4011 +DXIDSIA01 I 1ETALA0] )} +ETAPSI401) sETANGL4O01 )0
2 RHO(A01) +OMGAG( 801 ) +BETAGIA011 1ALPFAGI(A0] ) +PSIG(R01 I +EPSG(A0L)
3 Y(aU1) 921401 )8HLAGL )
COMMON X+X500¢$+0X0DS JROP s SCOT ¢COOK o X1 4DXIDSIETAJETAPS 1ETANG sRHO ¢
1 OMGAG:BETAGIALFAGePSIGIEPSGeYeZ¢SH
COMMON P1eSGTRL VP [ SAYINCOE 1MeNP IDEL TS eGAMMA JPIIPIB+PLTeYPOSs
1 YNEGeNPRINT oKT) oeKT2eLL eRKEND
COMMON L INK ¢BETMIEXY ¢EDY ¢NZ sN22oNW s SWeSWAIBETAWsBETARAIMACK MIKE
} SCRIT.SCRITAILKILKAJCRISSeCROSS e YSTAMU s THETA 4xBO
GO TO (171:72) «MODE
72 WRITE OUTAUT TAPE 6+73
23 FORMAT(AONU WRONG SUBROUTINES BEING USEDe EXECUTION DELETED )
CALL exIT
171 NisLin
00 S60 Lel+MP
LisL
AHO(L ) aUNG{0e0vSAY ) $OVO(BETHIEDY ) =TRE (020)
IF(SIL)=5H{1) 1552:5%54 4554
42 QMO(L JWRHOIL 1 =CAL L1+ SH{1} oSWI24N2)
IF(SIL)~SCRITISSL¢553.593
B8] RHO(LIORMOIL ) =2p08CAL (1 sSHIL) +SHI11+3:21¢TRE(OETAW)
GO TO 380
S%53 RHOILISRNOIL ) »2¢0%CAL L1 ¢SIL) 1SHI1}e142)+TREIDETAN)
GO TO s8¢
844 IF (SIL)=SWISSS325.556
5355 RMOLL)=RMI (LI CAL I eSHITFeSIL) aN1 s L 1=CAL T s5(L) +5SWe? eND)
1 +TRE(BETAW)
GO TO s80
586 RNO(LISRMOIL)+CALL{1+SHM(1)+SWoN1+2)~TRE (BETAW)
EF(L=LK560:560542
%42 IF(SIL)=SWAIS43+5604960
843 SMO(LISRNO(L ) $240¢TRE (BETANA)
IFLSIL)~SCRITAISAA s 545,545
B4 RHO(L }nRROIL I =240%CAL 1 1+SHIL) +SwA 1 34N22)
GO 10 840
548 RHOCLISRHOIL ) =2s0%CAL (1 ¢5(L) s SwAs 1 aN22)
GO TO 860
=280 CONTINVE
YSTa(BETH=X111)¢140)8EXYPCALI2e5H (1) oSHINTINZY
GO TO (36243611 xBD
862 YSTaYST+{1e0=(BETAWS] o0 ) REXPF (~BE TAW) ) 7 XSQA(MP)

581 RETURN
END
Page ¢4
824 RHOLL)I*RANOIL ) =2 8CAL { 1sSHIL) 1SWASIIN22)
GO TO =40
8528 AHO (L) SRHOIL ) =24 08CAL t LeS(L) s Swae L oN22)
GO TO 540

540 CONTINUE
YSTOCAL (2¢SHIL) ¢SWoN] ¢ 21+ (BETHXI (1) ¢ 10 ) TEXY
RETURN ..
N
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SUBROUT INE  TH18D ™IND
SPeERE

SUBROUTINE THIRD COMPUTES THE CHARGE DENSITY RMO(1oMP} AND THE
COLLECTED CURRENT YST FOR AN ATTRACTING SPAERICAL PROBE (LINK & 8)
OR A REPELLING SPHERICAL PROUE (LINK » &) IN THE CASE wril€ ANY
POTENTIAL BAHRIERS wHICH MAY EXIST DO NOT AFFECT THE AMOUNT OF
COLLECTED CUNRENT ( DO NOT AFFECT THE SHAPE OF TnE Ji vSe £ CURVE)

DIMENSION X(401)1XSG(40112514013+0X0S(401) ¢ROP(4G1145COTI401) s

1 COOKIAG1)eXit403 ) sDXIDSE401 ) 1ETACAO]) +ETAPS (401 ) «ETANG(401) ¢

2 RHO(401)¢OMGAG(AU11¢BETAGIA011 \ALFAGIA01)1PSIGIA0] ] 1EPSG(A0T) s

3 Y(401142(401)¢SH(401)

COMMON X +XS0+SeDXOS+sROP+SCOToCOOK o X1 +OXIDSIETAIETAPS JETANG¢RMO ¢

1 OMGAGeBETAGALFAGIPSIGeEPSGeYeZoSH

COMMON B oSOTPT oVIP Lo SAY (MODE sMeMP WDELTS sGAMMA +P]1 3sP164P 174 YPOS,
1 YNEGINPRINT KT 1 1KT20LL 1KEND )

COMMON L INK oBETHEXY s EDY oN2 eN22ANW s S ¢ SWA s BETAWIBETAWA s MACK 4 MEKE s
I SCRITISCRITANKILKASCRISSICROSS s YSTsAMUSTHETA 1KED sMCL ¢ MZET

760 GO TO (17%:72)«MODE

72 WRITE QUTPUT TARE 6472

13 FORMAT(49HO WRONG SUBROUTINES BEING USEDs EXECUTION OELETED )
CALL ExIT

175 GO TO (38445854583} MACK
586 EMAZEXPF (~SETAW)/SQTPI
985 00 TIC LelemP
LLst
RAQIL)a0,40
GO TO (200417745734177¢575) aMCD
200 IF(LINK=S)1T641T6:177

176 RHOILIZUNO(Ce09SAY) 4DUO(BETHIEDY ) =TRE(Ds0)=TRE (BETH )
G0 TO 178

177 SKITaSQRTF(MAXIF(UeOs (XTC(1I=XT(LID)
AHO (L. ) sEDY® (SCOT(L ) SCOEFT (SKIT/SCOTIL) '\ =COEFTISKIT}}
IF(MCD=1)201 42014575

201 GO TO (85761578:¢875) MACK

BT6 1FIL-LKIST) 571577

STT IFISIL)I=SWISTBe5T54578

B78 RHOIL)ISRMOIL 1420 0RUNOIBETAWIEMA
IF(S(L)I~SCRITISB0+3804981

800 ANO(LISRHOIL ) =20 0%CAL L 1oSHIL) +1SWe3e2)
‘GO TO 730

B8] RHO(LIVANCIL)I=2+0%CAL L ¢Sl ) e5SWela2)
G0 TO 730

TS IFIXIILY)IBT24871 4570

571 RHOIL YsRMO (L FeEXPF (=X 1L 1}
GO TO T30

Y72 AMOCLISRMOIL)+2aGRUNO( UsUsSAY 124 CRTRE(D0Q)
IR IMCO=1120242024730

202 GO TO (720e1780179) MACK

176 1FIL=LK)TIVaTIO e TAR

T42 IFISIL)=SWI TI2TRUGTEZN

T32 AHOIL)ITRHOI(L )} 42 ,COTRE (BETAR)
1T(S(LI=SCRIT)ITI6:7I7 ¢ 737

736 RHOIL) 2RO (LI ~2eORCAL{ T 4SHIL) oSWaIali2)
G0 TO 730

P 47
SUBROUT INE FOUKTH e FOURTH

SPwERE

TlS SUBNOUTING COMPITES CHARGE UENSITY RHQOLi=MP) AND CULLECTED
CURRENT YSTe FOR A SOREQICAL PROBEs UNDLR THE FOLLOWING
CONDITIONS

LOCUS IF EXTREMA CRNSIES ITSELF IN THE ¥ I4ST QUAURANT OF THE
(OMEGA«BETA) PLANE.

OIMEMSION X401 : +XSUIA0T)eS(A01 )} sDXDS (401} \ROPIAC]DSCOT 0D
1 COOKIADLIoXI(a0] " +OXIDS (A0 ) +ETALLOL)«ETAPSIA0I ) sETANGIGO] ) o
2 RHOCAJ1)sOMGACI 403 11 BETAGLAD] 4 e ALFAGIAO01 1 oMSIGIA0] 1 EPSGIADL) .
3 YIA01)e2{AT1HeSH(401)
COMMON X1 XSQsSIDXDCIROPS(OT 200K e X1 +OXIOSETA L TARS ¢ ETAKG WRHO o
1 OMGAGIHETAGIALFAGPSIGIENSGeYeZoSn
COMMON PLsSUTE1aVIP |+ SAYIMODE sMeMPoDTLYScOAMMA 1B 1 3P 6ol 74vCS,
1 YNEGINPRINT(KTLexT2oLLIKEND
COMMON. LINRIBETHAEXYsEOYV oN2 sNRRZ NN 1S e SWA IBETAWIAE TAWA ¢ MACK s MIKE o
L 5CRITASCRITAILKILAALCRISSvCROSS s YAT sAMU THETA oKBU
A0 TO 13084 72) +MO0E

T2 WRITE QUTBUT TARE 6.73

k2 ::IA;I::&‘; WRGNG SUBROUTINES BEING USEDe EXECUTION DELETED

+ Cx

WIE NP ILINCR) I 13604361

380 NIsUINK=8
a9 TO e

L NI INKC
EMACELDF tulTAR) 73QTR(

32 00 1) Lelsmp
e
IFILINE=0) 308,308+ 204

369 MMOIL 3 0UNOLOe0SAY I DUQIBETHIEDY) =TAE .0 60)
IFIR L I=0w 3R+ 301 228
WY MHOLL ) eMMO (L) S TAR LB TAN)
40 th 323
IR MAC (L, P MNO 1A} CALL T oSHE T CRISSINT ¢ 2)0TALLL «CROSS BV R4 R)
| TRE(BETAW)
o¢ YO a0

I8 HAOIL 1EDUQIBE THEDY)
1F(S(L)+801 38103810392
I8t FUOiL :oM0 (L ) SUNOIBET YW eBNA )
W TO 33
08 MMOIL IORMDIL ) =LA IOIITT AW EMA D SCAL S 1 e SHEI ) «CLI1SB OND o3
1 SCALILCROBRI1SWe B D)
IPAXT LI 130802804204
08 RUO(L 1aRHOIL ) $EXRF (x| tL})
60 10 0
I3 ANOIL ) 8RNO L ) $R s OMUND IOV MY I =R OO TREI 000}
30 Y0 80

323 IFISILI=CRODE)IZW IR0+ 3RO

0 3
320 RHOLL ISANGIL FCALE T oBHE LD e CRIBBINI 421 CAL L1 ICROBS S IL) 0 Be 1Y
b =CALCLesStL)eSWe b on:
40 10 0
I8 IFASILI=0ME1)13304338. 332
330 ML ISAMOIL F«CAL L oBMI L1 4CR ISR R)
IFIRILI=ACRITIIZ4ID) ¢ 33
LA et U d IS P11 SR FY SITS Y IR EYE 1% 13
€0 Y0 yt0
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737 AMOLL)SRANOIL ) ~2009CAL (1 eS(L ) eSusl oN2)
GO 10 730

120 IPIL-LXAITICeTIO4 722

T22 IF(BCL)=SWAITRIT7I0TI0

T2 MOILIBAAOIL 192400 TRE (BETAWA )
SP{BILISSCRITAITRG. 72T, TRY

726 RNO(LISRMOIL ) =2+ 00CAL 1 14SH(L) +SWA«JINR2)
G0 TO 730

T2T RHOILISANOLL ) o200RCAL { 19S(L ) e SWAS ) ¢N22)
a0 Y0 730

730 CONTINUE

GO TO (181 +2V4+42054204420%) ¢+NCD

185 1FILINK=S5)100+100+204

180 GO TO (TS04731) k80

T8O YSTe{1e0=(BETHS] ¢QIPEXY I/ ASAIMP) ¢ {BETH=X](119] 201 9EXRY
RE

TSL YSTe}e0=XIti)}
274 YSTeEXY

209 YST=0,0
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331 RHOILISANOIL)=2208CAL I LeSILY oSMEL 201 42)
@0 1o 320
332 IFISIL)~CRISS)II01334 4338
334 AMOIL IR0 L ISCALL S oSHEL ) oS TLI eNL 11 1AL LT e DL ) ¢CRISS ) 2 2)
40 1O 220
338 AHO(LISANO L 16CALI 14 SMIY ) o SRISSINIS2)
IF(S (L) =3CRITAIIZT 3384238
337 ROIL ) =RNOIL ) =20 00CAL { 1 eSMIL ) ICROSS 0002}
61 10 320
338 ANC(LISANO A ) =Re00CAL L1 e84k ) 1CROSS1 142}
GO 10 320
320 COnNTINUE
VST (METMX] 1114360 )1 OIXYHCAL LZ4SHT 1) oCRTSSINLID)
1 +CAL(RCROSS,Sue2oN )
171, INC=81 34743870 700
347 G0 TO (3MNTU0) 8O
370 YSTaVET4(|o0=(BETANGL o 01 IEXDF (=BETAY) }/XIQ D)
700 PEYUAN
[ X -]
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PUNCTION UMD (AoEMA) wo FUNCT 186 BUOIALEDY) owo
4 UND 8 (LeQ/R00T OF PI)> INTEGRAL FROM A TO INFINITY OF < L DUD B (1e0/R00T OF Pi;3 INTEGAAL FROM A 10 1INt Ty OF
[4 OBETAMENIY (=BLTA)PSORTP (OETA=X ]} P mu.gm;.uu;osutﬂuu-ll-lwluu-lltIHi
€ THASEXPF A} /8011 c EOVeEXPP (<A} /SQTP
DIMENSION X401 1eXSQ(A01129(4011+0XDS(4011sROP 1801 ) 13CGTLO01 ), OINENSION X(AC: 1 sXSGIA0I 125301 ) ¢OXDSI40; ) +ROM 4011 oSCOTIAON )Y
1 COOKIA01) ¢RI (403)eOXIDSIA01)ETAI401) +ETAPS (0L ) +sETANG (401 b e 4 COOKIBO1)eXE (4051 eDXID5(A01) sETALECL) sETAPS(A01)EIANGI401 )0
2 AHO(AT1) sOMGAG IS0 ) e BETAGI40 1) s ALFAG(A01 i oPS1GCADL 3 1TOSG(401) ¢ 2 AN0IA01)sOMGAGI 801 ) ¢BETAG. 801 ) vALFAGI401 ) oPSIGIA0L) 1ERSGIADI Y,
3 YUAO1)eXI1A0)eSMIA0I) 3 €1401)«Z(80))eSH140L1}
COMMON XeXS$C s SaDRIS sROP . SCOT 1COOK ¢ 219D 1DS1ETAJETABS ¢ETANG sAMO o ZOMMON X s XS5@s SvOXDS +ROP ¢ SCOT +COOK 1 X1 4DXI0S e ETACETARS +ETANG 4RMO ¢
1 OMGAGBETAGYALFAGIDS 1G,EPG Y24 SH 1 OMGAGBETASG s SLFAGIPS | GrERSGeYe2eSi
COMMON BT eSUTP{ 4 ¥ 1P §oSAYoMOOE +MeiP DELTS 1GAMMA B 12 4R 16| Ts VRIS COMMON P1eSOTPIAVIPLeSAY sHODE +MsMPIDELTS cGANMA PIIvP ISP 17+ YPOSs
1 YNEGNPRINT4KTIsKT2oLL +XEND 1 YNEGINPRINT sKT1oxTZoLL 1KEND
COMMON L INK\BETHIERYEDY sNZNZZ oMW ¢ SWo SWA s SETALBE (ANA s MACK e MIKE ¢ COMMON L INK¢BETHIEXY EDY sNZoN22oNW ¢ SWs SwA s BETANIAETAUA ¢ MACK MIXE »
1 SCRITISCRITAMKWLKAICAISSCROSSsYSTIAMUeTHETA 1 TIO 4MLD s MZET s2A0 T 1 SCRIT(SCRITALKILKAICRISSICROSS s YSTIAMULTHEYA (KBO+MCOL MIET sHALT
CUNMY sCRGAG ! FYLYY
DUMMY=BETAGE ) OUNMY ROMGAG( 1)
DUMMYEALFAGt]) OuMMY SBETAG( |}
AduA OUMMYLALFAG( 1)
TESTadxl(LL) 1#ILL=1)580143024501
IF(TEST 150343044904 302 DUWOR040
805 IF(TEST/XI(LL I o0E~001213¢213.212 AETUaN
213 IF(LXXR=REND={)21002114210 01 DENOM®]+0-XSQitr, b
211 KKKIKKK+1 CAPPL (X1 (LL)={XSI{LL) ®X111)}I/0ENOM
GO 10 212 TESTSA=CAPPA
210 WRITE OUTPUT TAPE 643508¢X] (LL 3 cA Ll s KKK (KEND 1F(TEST)IS030374 4804
0% FORAMAT(20M UMO NEG SORT XI(LLIIPE14sTs3H AnIPE1AsTeaN LLoI3s e _ 802 IF(TEST/CARPA+10E=~061217¢2130212
1 SH KKxs | 8e8i KEMOTS)
LXXXRKENO 1 213 IF(LXXX-KEND=-112104211+210
KxXm] 211 %XKxeKKKe ]
GO To 212 w0 10 212
210 WRITE OUTPUT TABE @+508sCAPPA A ILL 1 XKKIKEND
212 TEST0,0 508 FORMAY(201 DUG NEG SOQT CAPPARIPE1.e7+IW AYIPEISsT44H LLEII.
304 UND=0.8862267S9EMA 1 BM KKKEi2e8H KENDWIS)
RETURN LXXKeKEND+
B04 EX®SQRATF(TEST) XK}
300 UNO= (EX+COLFTLEX ) 1 eEMA Go TO 212
RETURM
END 212 TESTHO,0
308 OUQISCOTILL)P0«0862269S3EOY
aETUAN
504 EXSSORTFITEST)
306 DUOESCOT (LL )@ (EXSCOLF T (EX) ) *EDY
RETUAN
END
Page §) Py
FUNCTION TRE(A? i TRE FUNCTION SDPNIT) soe 3 SOFN
[ TRES(1,0/R00T OF P11¢INTEGSAL FROM 4 TO AMDA OF ¢ SOFNIT)eINTEGRAL FROM O TO T OF EXPF(Xe82)3Dx
¢ DUETAREXRPF («AETAI® SOATF IBETA=X I ~BETASXSO/KIL MR Y c I 13 BETUGEN O AND 848, TERM-BY-TERM INTEGRATION ON TAY OR
< SERIES 13 CAMRIED OUTe
DIMENSION X 14011 eXSQ{G0114S{8711:0XDS(431)+ROP (401} +SLLTEA01s ¢ IF T 1S BETWEEN $43 AND ¥o lgmronc SERIES 1S USED,
| COOMIQ01%oXI{801)¢DXIDSIA0NETALAQ)IsETAPS(A01) (ETANGIAG] 1 c 1P 1 18 LESS THAN O OR GREATER THAN 94 EXECUTION IS TERMINATED,
2 RHOT401)20MGAG{ 401 ) s BETAGI AU} sALFAGIACT ) 1PRIGI401 ) e EPSGIQ01 ) <

3 VIACE) o Z(A01)aSHIADE Y

SOMMON XaXSUeSeONDSsROPSCOT . CTC L e X1 ORIOSIETASETAPS e ETANG ¢ RHD o

1 OMGAGIETAGIALIAGIPY IGIEPSGY el SH

COMMON PIoeSUTPLoVIPLe SAYIMODE MNP DELTS 1GANMA ¢RI 1R 164 [T2YA0S,
1 YNEGINPRINT (KT | oKT2eLb oXKEND

COMMON L 11:{ sbETHEXY EDYINZ sNI2+NW e SWsSuA o BETEW 1 BETANA MACK 1 MIKE Y
§ SCRI . SCRITAWK . KALCRISSICROSS s YSToAMY» THETA +xBD

[YLTY

GO TO t4144804) B0

(PPl )eUS,406 408

TRERD4O

RETURN

IFERG L VAU s 401 0402

#RITS QUTAUY TaBE $.403vAsk

FORMETE (9™ TRE X1 POSITIVE AsIPEla.TaH 5L-IJI

Q0 TC a0e

EMy - EREQILLI/NSOIMP )=t a0

AMOA xoX i (LG D ARMY

TEST-AMDA~A

EEATEST elUsal L edi

410 WR!FE QUTPUT TAPE $e412.LLsAMDA A KMy

A12 FORMATCIOM THE NEG S0KT LLIJOM AMOAIPELG.T 2N ALPEIA T 0N EMULBEL
14470
§3 TO ADa

A1l SMeSOATRITEST)

404 TRES[SARTY (EMUIZ/SQTRL ) S (SMOERRE (=4 ) «f XPF ( ~AMDA ) SSOFNI SN}
M TUAN
N

a1l
414
404

40%
32
403

THIS SUBPROGRAM IS CALLED UY FUNCTION TRE.

DTay
IP{Y=Re01100010011

WRITE QUIPUT TAPE &el2eY

SORMAT(4Zv EXECUTION TERMINATED 8Y FUNCTION 30FNe THIPEIALT)
SENSE LIGHT 1

SENSE L 1GHT R
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SUBROUT INE FIRST ,insy Page
573 AMsSORTF (BETAw)
<L INDEA YSTOYST+{100=Re0IENPF ( ~BETAW) SSAYS (psCORP V(M) ) /X (NR)
376 RETUAN
THIS SUBROUT INE COMPUTES CHARGE DENSITY RMOT[-MP) AND COLLECTED o

CURRENT YSTe FOR A CYL INDRICAL PROBEs UNDER THE FOLLOWING
CONDITIONS.

LOCUS OF EXTREMA ENTERS FIRST QUADRANT 8Y CROSSING OMEGA AXISe AND
DOES NOT CROSS ITSELF IN THIS QUADRANTe LINK o | OR 2.

DIMENSION X(A0L)oXSCIA.11eStaL1)eDXDS(401) ROPIA01)+SCOTIA01)

1 COIKIA01IeRi A1) 10NIOLIAT1 1o TALACI)sETAPS (4011 1ETANGLAG]) .

2 RMOIAVIIeOMUAGIAL] 1eDETAGIA0L JoALFAGIA01 ) ¢PSIGIATL ) +EPSGIADS )«

3 viasl)eZta ) eSHIAC))

COMMON 7 eX5UsSe0XUSsRIP e SCOTHCOOK o X 4OXIDSeETAIETAPSIETANGIRMO ¢ "

1 OMGAGeBETAGALFAGIPSIGeEPSGeYeZeSH

COMMON P1eSQTRLVIP e SAY sMODE «MeMPIDELTS 1GAMMA R J4P6+P 174 YPOS,

1 YNEGINPRINY oK T1aKT200 Lo nEND

COMMON LINK eBETHIEXYsEDY N2 sN22sNW e Swe Sl BETARIBETAWA JMACK s MIRE s

1 SCRITISLCRITAILK ILKAICRISSITROSSIYST o AMUS THETA KBO

GO TO t72417114MODE
72 WRITE QUTPUT TAPE 671
T3 FORMAT(49HI WwRONG SUBROUTINES

cALL EXIT
171 NIsUING

ECY=EXY/P]

00 887 LE1sMP

LLaL

RHO(L 1 8~DYOIEETHIECY )4 TRY (D40}

IF(SIL)I=SHE1 i 1552:554 4554

~

ING USEDs EXECUTION OELETED )

552 ARILISRHOILI*CALILoSMI1)e5we2eN2)
IFISIL)=SCRITISS]+5%24553

B8] RHO{L)IZRMCIL)I 22 0PCAL L aLMTL) eSHIT1)103e2)-TRY(IETAGIGZIL )
53 YO sl

AR RAQILISRNO (L) 426 CPCAL LL1aBIL e i3] e2)=TRY(UETAW)I+Z(L)
GO TO s6.

T34 1F 1SIL)-5W) 955555556

MAT RMO(L) = QHOILI=CALCToSHIL) oSILI NI s 1)4CAL L] eSILIsSWel oND)
1 =TRY(IETAWIH2(L)
GO TO s6C

36 QHOIL)IaRROILI=CAL T 4SH{ |} s5WeN1 ¢21+TRY(BE TAW)
IFIL=-LKIZ7.eS7. 4542

%32 IFiS(L)=Luh) 542,870,570

BT, GS TO (3724973 4xD

BT 1FLLaMP BT 15604860

€Y1 AACILI®RMO(L I #EXPF (=X 1 (L1/¢]sd=X0ILY, X5Q(MO)})
30 T0 56°

373 RHO(LIMRHO(LI ¢l a0
30 TO %62

%43 RAOILI=RNO(LI=2¢08TRY (47 TABAI ¢ Z (L)
IFESEL ) =5CRITAISAA, S6® 308

%44 QHOLLISRNMUIL 120 08CAL T1aSHIL) +Sud e 34N22)

GO TQ s6

ANOIL I @I L b +caUSCAL LT et ) 2 hahs LeN22D

']
>
K]

%63 TONTIMUE

QuaS3RIFEAETHeXx1(12)
PRI 2eIMEIYRNReSOEFT 1R I oSALE205Mt | e reNd IN2)
S8 YD 1874518, k3D
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SUBROUT INC SCCIND SLCOND 987 1713(L1-3ua) 988,838,338
CYA LORR 430 AMOIL ) aAMOIL 1 e2eOSITAY JUsCIH=TRYIBETARAL boZILY
G0 TO 884
THIS SUDROUT ING COMAUTES GrARb. VENSITY AROLI=MD) AN COLLECTERD
LUANENT YS§Ta FOR A& CYLINDRICAL PROpEs WNMIR TeE POLL0wiINgG 994 1FE36L)~SCRITAISTABAN.229
CONDITIINSe B4 B LI eMNGIL oo OMCAL E Ly IMTL) cSWA LI NED)
LOMSE OF EXTUEMA "AY! NS FIRST LUAUNANT BY CROSSING BEYA AxESe AND G0 T0 942
0£5 VAT CROLS TTSILE I TWIS JUS.UANTY LINK & ) OR &4 APT BNCILIORMO (L 1 02 00CA. FLaBtL ) 1Sk 1 1N2RY
DU 0N XIACTI ARG 1103 1a3110€I5E401) RO IAILI23CLT (40110 a0 Cont It
P CO0S AT e AU AR IDYIA AL T2 ta) s TSR a0l 1 s TG IAGY Do e YReRIt1l
3 A 011 ONGAGIE 1oL TAGISLE eALPAG (A1 1(PSIGIATI)I1ERABINGL ). s JQRTN bt
Y vta tiadiachlabnia {0 ~ATSCALSEs IR L) o DU INL s R1ERQPEOY O LBnCOEF T iMNE )
TOVMMON Wi RSt a0 RIS GO AT T3 00K 481 2N EUY L TRAILT ARG (LT NG il o A "
1 QMG L TR e AT AL RS TuabP LD e ¥y [ ]

TP BLaGUTEL IR g LA RNAIC e MP O TS10ANMA B LB (2P T2 vB0N
T YNEG PRI T T ) en TRaLL s NG
C DMK LI T AT TA LR EL I SL TR RV RN ST ITU ST FTYY P14 $¥ 17 . 29
ool LT TR LMl MRS eERIUS » ¥R MM TETE L NED
30 YO TR VL) eMI0L
T2 WRITE OUTIUY YARE A7)
P SoUMAT AN, SBAG SLGLOVTINGY W ING UMD JRETUTION GELETED
AL RxtY
[RANL LA SIE LF ]
LIRS LY ]
D0 B4 Lelelw
(LTS
s LIS TTLLETTI § L0 XS 40
S STR RS CIL Y Y ARR § 7Y

BAl WNOILIEBROILIOLILY
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SVBBOUT INE THIRD COMPUTES THE CrHARMGE OENSITY W0(1«mP) AND "M
COLARCTED CURMENT VST FOR AN ATTRACTING CYLINDRICAL PROBE (( jaxed)
OR A MEAELLING CYLINDRICAL OMOBE (LIMNKRS1 [N ‘HE CASE weENE ANY
POTENTIAL BARRIENS wniCH mMAY EXIST OO MOT AFPECT Tl AMOUNT OF
COLLECTRD CUMENT ( 0O NOT AFFECT T»E SMAPE Or THE JI v3s € Cuftvl}

OIMENSION X(8C1)eXSQAIA011e5(401IeUXDRIAT11ROPIS01)1eIT0T(4D1) e

1 COORI401)4X1(001)eDXIOSIAOL I eETALSQL) +ETIPS(A0L) JETANG(S0L )

2 RMOL401)sOMGAG IR0 ] ) BETAGIA0] ) eALTACISQ) 1ePSIGIA0) 1 1EPSH(405 )¢
3 Y(A011e2tA01)¢5M(801?

COMMON XeN3Q+S¢DXDSROPSCOT 00X 4 X} dOXIOS ITAJKTARSIETANG RO o

1 OMGAG:BETAGIALFAGPLIGIEPSGevaZetn

COMMON P1¢SCTPIoVIPI¢SAYeMODE e MsMBsDEL TS GAMMA LRI NP 1GsP1TeYROS .
I YNEGINPRINT KT oKT 29kl o XEND

COMMON L INKyBETHIEXYsEDY oN2eN22aNN s SW o Sah +BETAWIBETANA I MACK JMIKE s
1 SCRITSCRITAWKILKAICRISSICROSS s YSToAMUSTHETA ¢XBO «MCO+MZE™

GO TO (7241785 emODE

WRITE QUTPUT TARE $.73

FORMAT(ASHO WRONG SUBROUTINES BEING USEDe EXECUTION DELETED )
CALL ExIT

ECYeExy/PL

00 T30 LelemP

Lol

RMOLL 200

GU TQ (20041778 75¢1774879) ¢MCD
IPILINK=51 17601764177

ANO L) e =DYQIBETHECY ) e TRY (Je 01 TRVIAETR)
GO YO 178

RMOIL) v =DYO(BETHECY)
IF(MCD=112010201¢9TS

GO TO (3765753731 sMACK
IFL=LK 18714371577
IFESt ) =SwI3T8+373.378

IFISIL)=3CRIT)I380.580.98"

AHO L) wRMO L ) 20 00CAL (1 eS1IL 1 2SWe I e )02t
G0 TO TIO

RO ILIeRNOIL) +2,00CAL 1T e5tL) s Swelad)e 2t
GO 1O 130

LrixIiL 119724971374
RMOLLISAMGIL POEXPF tax | (L)Y
@4 10 132

REeO LI sPDMOIL ) 02408 TRY (04Tt
IFIMCD=§ 1202 20¢ ¢ 700

GO YO (72041700} 783 4MACK

(LA SR TV INPS L ¥ 5

IFLSLL) +SWITIZe TR T20

QO ILIRAMOIL 1=22 00 TRY (AETAL /221
IFtSILI=SCRITITIOS T3P 727

SO L I aRNOIL I S 2o 00CAL E L eBntL h s Swe Jen2)
623 TQ P30
RMOLL e ANO L P oSa00CAL (1 aSEL) 0 Swe} anN2)
6L YO T3
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JJSROUT INE FOUNTH

TrelS SUBHOUTIME COMPLTES THARGE JEMAITY MnOL1~NBL AnO IOuLECTED
CLMRENT ¥ST, FOR & CYLbORITAL BOCHE. LADER T POLLOW! G
ComMIITEONS .

LOCUS OF ENCUERA CROSILS ITSELS 1& ik FIBNT JuADWANT CF Tag
tONEGALITTA) it

QIMENSION BLaYE)ex3dia t2a3ta00 RS- TLLYRY-SUIN - XY TRRS SE-A XY 13 4 2
1 COORLANIIsNital]reda IRIE AL TRLAL L TARSIAQL I sETANGLADT )

2 MDA OMASG A D I eOE TABIAIE I AL T AR AT 1 BRI A ek RR AT
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220 15 _-LKAIT404TA0. TR2

PR2 IFIS(L ) =%wA) TR 740100

723 MA0IL)ISANQ1L ) =2, 00TRY(ELTAWA 02 (L)
PUSIL 1 =SCHETAI 200727727

P28 AMOIL 1 0ANGIL ) o2 00CAL 3 L eSmiL ) o Swh e Jondd)
GO 10 720

T2Y AOILI RN L) #240%CALE 1o SIL ) oS L an2D)
G0 10 730

GO TO (744,749%).,x80

IFL-ME ;7410 T30 730

QreOIL 1 oRMO (L ' +EXPT (=X | 64,2711 e0~XSQ(L) /7RI (MO} 5
G0 Y0 73

TAS RNOILISRNGILI+. 40

T30 CONTINUE

GO 10 (181:2V84209¢2044209%) eMCD
181 1P LI =) 18V 1800208
180 AM=SORTFIBEYH=RI(L))
Y5T02,00EDV@IRANACOEFTY (Bn) .
GO TO (T748:T4T1 kB0
Ta4 AUUSLRTF(BETHY
YSTRYET (] 4C=2400E0YH(RWeCOEF T{RWI ) )/ NIMDY
747 RETURN
208 vSTeExy
ETURN
209 578340
RETURN
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220 DVOS LECYOIMII1I=RIILL ) 10D, 80X 1 L) /3SS i hoORY

RE YA

198 ve2iboam,
ALe360
Aca) s809437%
FlasQRYFtlec -t TrETA AN, )1002)
wAD®)
S0 YO 129

103 ANOT»8-GRAVS
1P AN MBIt = e BOTHE A /AN I2 102000200

22 TLEMaEXBF i ~onQT )
AINOSJUAC Lvevn T lMetudvis s a@ool ks |

.
A2 ] o80T

INIT MO T A,

ALNOTRINOT S ST LAt SaZete )t
ACNDT A 23S tanDT S
PrasuNtPILe. i tagTasam 100}

w-aliat
33 T2 ey

121 alwmesre
a s a0’
Axaaane?

Page 8¢
PV TR R XY I WRE TR N g N 2 AP IR VY XY P AN P T S LIy
T LI PIE S ST VLIV Y LAY S e S S P RE IR FIRT L X TR SN 13 S RIS L Y]
 JPEPRET IR UL PR LRI T A RN )
% "8 e

SR ILIE TR As3T 1 ALY SRN]
19PN It o

LAY SRV, AASGERT S LIL T 320, BRILSLINE TIH
BAN I VARG IRWIL NI Tl PIEIINEN L I M AL
LLTRRRLY " PRy YY1 ]

“ ¥o 8

1 vimiirvdacsy
roigeontn
M e
w0 AL AR LIRRS ]

OF FRigatioivler stoln 4110 3t Lt
suiatagteeey
Thaewatuel
LY TRTRRRL Werl SFYE LY
LX TRNTY
[SECTRRRYE TR RR Y TN
W Tt wr S iatug bty et Nt PR il uiasateg AN IRt

- IR RY T SR] .
CEL Y 2N

L T2

tema et Ty

e T DAY L Ve TR SRy L YY)
WIeCM 10me 1P ORIT Y
(2]

o RPN TS RY 1)
IS |veonime
wiftaioyt@te jut sy
L N T TR L IR L RV T L P Y R
LT TR RRYTET TTRPRL PR N A 2T
TGO U RIS w S T Oy
@Rt et t3e 1E W Ie iR tul TOMI RINS ) P
- tem targem
AL SIIPL T LY R 1 RS R SRR}

EEEY X1 ¥

AR IS IRRT SRST TRST IR JRPL 4

1O WL T 1L L uet v

B OB T8 192:03.008) EmAy

B MGOLBRIF LABOILLISIESSIIEINI/ 1IN0 tNOILL VI IO LOPPRL LY

1O JUOE VS IAT AN LIMGIEIR)
- o

LB o L YSATERNSRRL SNIWNIRY 22 _JE IR "3 LTV T RN T i)
oty
Lo )

aTIIINS

[RTCRRY IR SYY TINE R VY LTIV R TRV P RN



nnn

Page 8
FUNCTION LOCEK) e 35

THIS FUNCTION SABRA0GHNAN §S USED DY FUNCTION DYO AND IS CALLAD
TAROUGH UNIVERSIRY OF TORONTO FORTRAN I MUMER ICAL OUADRATURE
LUBPAGGRAN QUAD

OIMENSION 1(801)eaSO1401)¢S1401)«DRDSIN01) +ROP(801)+SCOTIAON Y,
1 COOREAOLTeXI(AUIRIOXIDSINOL I sETA(ADY I +ETAPS L0 ) sETANGIADL Yo

2 MIO(AC1 1 o0MGAGIA. ! 1aBETAGIA0L ) ALFAGIS0))cPSIGIAD1 1 +EPSG1401)
3 YI6011 020401143601 )

COMMON XoX$0¢34OXBEoROP s SCOT ¢ COOK o X | OXIOSETA (L TARS s ETANG AN ¢
| OMGAGYBETAG ALFAGAPS IGIENSG oY o2 oSN

COMMON P14SOTE 1 sVIFLe SAYIMOOE s8¢ WP DELTS 1 AANMA B3PI 8.P 17, YPDS s
I YNEGONPRINT oK T T kT 20 LL s KEND

COMMON L INKsBETHAERY LECY oN2 oNZ2 s NWvSHeSE. 2T,
P SCAITASCRITACLKILAALCRISSICROSS ¢« YSToAMy, ¢ TAGKEO

IP(XLIIG1ed0L0 102
121 CDQ=040
RETURN
102 FULNSLOGF )
COOw=1s 071 (PLNATHETR) @ SORTF (FLNES2=ANUR 02} )
RETUAN
ENe
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DO 16 Kx=4320002

K IMBK=]

TSOSTENSTHETA, TLOATE (K wm*

TSNETSORTHETA FLOATF (&

AMSK 2 AMSK ®AMOK

COE+COESFLOATF (K {M) FLOAT" (K)

PaP+TS0+ TSN

TERMEPSAMSK #(OE

SUME SUM+ TERM

IP(SUNOI.UE-UT-YEMH.;‘?.!?_
16 CONTINUE

19 ?Q"'DQSQ(EKPAIQZ‘NlLLlI!\HD)lll'LL!/DHY'EIFA/YNEYA.SUN)
RETURN

A1 FLAMz=AMU/XTILL)
WEMAXIF (AMUeB,3)
SOWSSQRTF (W)
SOL=SQRTKF (FLAM)
DEE*SQw
Caied
COOaCOEF T ¢ SOW/SAL )
Re2eirgOLeCO0
TERMaC#R
SuMes TEQM

00 S00 wNals2V
FLNEN
DEESDEE /W
CoC/Be00FLOATFI(20N=] 1082 /FLN
Re{DEER/FLAM)/ (FLN=0 81
TERAMOaTERM
TERMuCeR
IF (AUSE (TEWM) =ABSF (TLRMO) 1501 1801 1498
SO1 SAMISUMGTERM
IF($AMaSUM IS0+ S0 0800
BIU SUMESAM
G0 YO %02

498 SUNLUMe0s BATERNO
BU2 IFIABIT (SUMI O] 0E=0B=A0SF (TERMO) 15048034804

333 Misset

Nee|

IR (AMUPLANIB) )
AW P {AMU=BYIBID

OB FACTR1004Ce 120/ (AMUSFLARI 40703829/ (AMUSELAN) S92
TV SIMSFLAM/AMUSSORTF ( 20000 1 /FLAM) 3CO0ORACT
40 T0 72

13 WRITE QUIPUT TABE 48000 SuM s TEMM. ANy (FLAN, MLSS
P12 FOAMATIZIN *CN TAY NONCOWVERGENCE \Bagi2,8.02)
G0 TO 1304¢8111MI88

PG ASYCERL/ANUS . ROF ( LAMI~R 1 FLAN) 50N/ 24 3066282
TAYCa0,0
1 {AMe8e3 1820020820

XS AL 10001007 AN
EXMaK O ¢ =AL 04Ny )
(3 (113 L O {1°7)

BETADA s MACK ¢ IXKE o
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PUNCTION TRYIAR)
TRYS{1.0/P119INTRGRA. FEOR 4 1O Bn OF
DRLTASERS? (~SETAINGS T $4 2SQveRTA/ '
WARNING = FUNCTICN V¥ w‘”' SIvg CoMNECT REMAT (f MAGNITOE OF
X1iLL} 13 GagaTen veem ¥

(OETA=NIZM))

ARREAGY ¥ sROPIA0] 1o SLOTIAOL Y0
R TAPS (601 1 oRTANG (801 ) ¢
T BEI001) LK}

OIMENSION X401 1 EI0EE -~

1 COOKIA011e k1101 1 MMy 0y, 4 0h

2 AUO(AOL ) «ONGAGIAUT1oBETAG 40 ) - 2t

3 VEROI142taUl)eSna0))

COMMON HeRSQe S0 MOPICOT «COOK o0

1 QNGAGBETAG¢ALF AGoPS LGIEPSG Yol BN
COMMON P14SUTE! oVIP {4 SAVIMOOE oo P02 OLL TS 1 GAMNE ST JoB1 64 P17 VI03e
YNEG NS INT oK T | sKT2oLL eXEND

‘coum; LANK ETHOEXY e EDV oN2 e M2Z o Wwt o Sw o SUA t SR TP B TAwA s RACK s HIRE o

3 SCRITeSCRITAMKKAICRISSICROSS VST oA +ROD JWCO s MIET

IREISAE . - +ETAPS 1 L TANG D

Dy sONGAGL LD

DuUMt7 sBETAGI LY

DUMBY#ALFAGL 1Y

AsAA

GO TO (63+68) K80
&6 TRYa0,0

RE YU

65 1PILL-NP)1I3¢38:33
36 TAYSO,SZXAFL=A)
ne TVAN

35 DOMOXSQAILL)AKSQIMP)I =10
OHTasSORTE LOON)
BHEaX[ fLL) /OO
ANuEBN/ 240
EXPACXPF { =AMU)
TAETAsAMU~X1 (LL )
1FITHET A=A} 7S+ TS 061

78 WRITE OUTPUT TAPE & YO oLk o XEND s AW e THETA AL
76 FORMAT(18n FCN TAYe TROUBLEe 215¢1P3E13:7 )
caLL ExIT

&1 IFtBn-a) 30eIUelt

30 WRITE OUTPUT TARE BeTE oLl sKEND AN THETACAS
70 TAYAD.0
RETURN

31 CERNS(AWU/Z2440%8/ 1 1oPBOAM) ) P83 (AN (0292 THETAL ;8831 ¢0
HAYSIL IR X2 T

10 WRITE OUTPUT TAPE 6e78sLl sKENGIANUS THETA AL
AsVev

11 IF(CERNIAVcAJAL

40 COEs0.S
ANOK e (AMY/THETA) 002
AMSK ¥ AMOR
TSO=THETA
TSNAUGSETHETASSY
Pale JeTSOPTSN

Culed

el Xy

UNeE Xy

G2N® (ExMy~EXw ) 7ALE
TERNeIOOIN
SumMsTERY

00 813 Naivil
CaC/FLCATF (20N 002
UNsUNS ANy
PNy
Q2NN (FLOATF { 20N ) *QNwUNIUN ) 748
UNsUNSAMY
WNayNSy
QNS (FLOATF (20N) 30NN+ N ) 7 8E
TERM2Ce Q2N
SAMeSUM S TERW
IF{SAM=5UM)IS105110300
510 SuseSAn

MISSe2
IFCABSFISUMI®| o OE~US~ABSF (TERN) 18] 3e813s911

B11 TAYCEP]ZANUSEXRT (AMU/ZFL &M} 2SUM

826 S51MsASYCeTAYC
e SH(TXPASSZEXN(LL ) /KNP IONT ILL) ZDRTOS NNy

12 EXMINASEXNRF (~A)

IFICERN143:43:48
48 IFIEXNINA=EXCAS82-2,0E=0014%149148
A9 TRYR0.0

RETURN

43 ALFuA/ANUe] o0
COSIeSARTF (1e0=ALF #82)
SNuOSeP]=ATANF (ALF /COSS )
SNAaCOSS
SNBaD SR {ALF#COSS+SN)
ALKIMeALF
TSKe0BOTHETAGER
ANSK MUZTHETA
AMSKKBAMSK L #o2
Pale0+THETA
SUMBSNEPAANSK | & SNA
Pele TAK
SUMaSUMSPRAMSK X ¢ SNB

00 &2 K934200
TSKETSKOTHETA/FLOATI(K)
AMSKKRAMSKICRANSK )
ALK IMBALKIWSALF
SNCS [ALK IHSCOSSIFLOATF (K=1) $3NAI/FLOATF 1K |
NAasNg
SNBEING
RaPsTIK
TERNPOANSKKOING
SUMB S TEAN
¥ €381 LOE=0T=ABSF (TRAM) 1284 B8 26
22 CONTInUE

20 SIMEXBASSUN/THETA
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40 MPEAIANY~) 00
ALINCATAN (ALF/3QRTT (] .0-ALFeOD))
M lned,300)
99 SINeCRPACQUADJAL IMeI WeZ0REs J90 «Qolel)
cone
«“w TQ 90

SO ANGESONTF I NSOILL 104/ 1 (X3 ILL I =RIQINPL S LBM=A)) )
T3 MRY & EXMINARATANS (ARG /P] - O.SoLnPAse]
] - CaS/PIERILL IZR(WPIORTILL ) AMTESIN
g Tut .
[

Page T

2AIN BROGRAM 3 e

SOLUTION OF ¥ DOUBLL PRINE © SXOF(Y) 1o u=ERF(SORTF (V) ))/8e0
® COEFY(I0ATFLY)I/2QTRL

DIMENSION STI4V01)eRISUTIeTIS0TIeETAISO}I eSSt D VPIG000 e
1 ETTALA00))¢551(4C01 1 sRPTRAP 14001 )

IV NEAD InPUT TAPE S0llsYMARY] +MXeKXPRININYG cKYPRIN
11 FORMAT{ 1PZ2E104J08 (37
WRITE QUTAUT TARE $.12
12 FORMAT(¢AM] SOLUTION OF
1¥)133/72.00
WRITE QUTPUT TARE G413¢VMAKSYLsNNeKXPRINNYE . KVPR [0
13 FORMAT( | Omvu YRAX . BXZIY ) o GXZHNX « @ RSO I Mo TX INNYP 1 4 XSMETPR I 7
1 1P2E10e3e4130 )

Y J0UBLE PRIME « IXNPFEVIOLN) aO-DAF 1SORTY ¢

SQTRIv] o 7724329
DELXaSOATIF(Y] ) /FLOATF (a1
NAPENKS )

D0 1S Ialexp

X1 220ELXOFLOATF ([~}
XSQeK(])ee2

viTiaxsQ

TERMS TERIAXSQ/FLOATF (L 43

SAMESUN Lo TERM

1P (SAM-SLMAI 10116
16 SumAaSAm

WRITE QUTPUT TARE &eIN
19 FORMAT( 10N NONCONV 1)
G0 10 10

17 TS0»2.0ex80
Rmg a0, 60046687
TERAM= UMD
00 20 x=2c30
TEAMOTERMSTSQ/FLOATF ( 20K+1)
SAMS JUNE+ TENM
1P U3AN-SUNB) 2023420

29 SUMBasAn

WRITE QUTAPUT TABE §.24
FORMAT( LOH NONCONY 2)
GO Y0 10

>

23 GOSUMAR2,00K( 1) ESUMI/SQTP !
ST{1)=240/%0RTF (G)
I8 ETALLIeCOEFTIR( ) I/SOTH]

$111n060
S(2)5(8e085T(1)¢0,008T(2)~ST121)004LR/1 2¢O
00 28 1e3enX
23 SUIIRSIt 140130 R (STl ISTLII IRV I=R)=ST (101 ) ) 00RLA/ /2200
SINXPFIOS (NN I+ (Se08STINNP) ¢+ 00T INLI=RT INN=1 } ) SOELR/ I Re D

DELYE LYNAX Y1) /FLOATF {NVE
NYSRaNYRe |

Page %0
UK TION ComEOa) cone

THIS ASICTION SUBPROSAAS {§ USED 8¢ FUNCTION TRY AND I3 CALLED
TEOUGR UNIVERSITY OF TORONTO PORTERAN 11 swUsERICAL OUADRATUAR
SURPROERAS OUAD«

onn

ntaoy) 14364011 .0N081408 14800 (4011 s8COTLA01 )
1 COORIA01 ) oML (0010 ¢DRIOCSCA0T ) oL TALSO1 1 L TAPSEIA01 ) «ETANE (40N 1 o
2 014011 .CMGAGI40) ) +BETAGISG1 1ALFAGLAD1 ) «FS161001 ) +EPS8(401) o
3 YIa011 42801 ) e $HEA01)
CONMON X+X30+3+0008 4R0P+ ICOT < COOX e X1 o GR 1O+ ETA K TEPS LZTAME MO o
1 ONGAGEETAG: MIAB+PR 1GoRPES 2 Vol o SH
COMRON P1o30TRLoviPloSAYMOOK el NP OELTS MBI P 13.P10.PL 7, vROS ¢
1 YIEG PR INT aKT] oXToLL oNEMD
COMMON L IMIC o SETHENT I ROY R o H22 N0 ¢ S5 SUA  BE TAU s BE TAWA « ALK s M LR o
1 3CRITSCRITAILK WX A:CRISSCROSS YT (A2 THETA 90O

SANNL cANUSS NP 1A}
COREeEYPF ( ~SAML 1 71 SAMDRL O THE TA Y
A TURN

Lo -

Page N2

00 30 teiuvee

YPIL 1oV SDELVOFLOATP L =1

SKYSSORVF IV}

COEnCOLPTIIXY)

ETTALI)eCOE/SOTH)

FYe (XY +COE 920/ SATP =10
30 STLIIRLO/SARTT(FY)

$S11 38809
SE210$3C1 10 Be08ST(1)08e00$TI2)=ST (I3 1MLV /1200
00 32 1e3enyP
32 SSE1e85C1=110C13e0RISTCI=120ST¢1 ) )=gTLI=21=ST (141) ) 2DELY /240
SINYIP 1 oSS (NYP 1o’ DeOET INYPR ) eBs OSETLANYI ) =ST INvS=] 1 ) 00ELY/ 1 200

OO a1 $m)NYP®
41 APTRAR(()s 2e00VRILOST(T)

wmiTe TAPE 8.40
AC PORMAT( INOCZ(PRINYVeJIXINETA ¢ L ININT e 12X ) +SAGHP TRAS )
isl

=1

12TEP o/ NOR Iy

JETEPNYP /XY IN

HANPOXMAXOF { I STEP+ ISTERIOL

00 36 =1 mARP

WRITE OUTIUT TAPE Ge2SeVII)eETALI) eSC1FeVPII2ETTALI) +S5LJ) AP TRAS

1w
38 FORMATIIN cZIFI1a8.F1a,9:FidateliXiePiled)

lelexnpRin
36 JrARYPRIN

80 10 10

oo
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WA lre PMOURAN o
SMERICAL PAORE - ATTRACTED PARTICLES AT ZER0 TEwWiERaTUAR

ALLENs COYUe AND REYWMOLDS EOUATLION
11e0/75882)00/70513802407 /7051 = AA/(SO30530RTF (V) = ENOF(=T)
WENE 24 © DO INENIIONAL 108 CURRENT 7 (Z«00SORTF(PIN

AEPERENCE 100 CURRENT |S TWAT COLLECTED BY A SPPEAE OF AADIVS OME
TLECTAON DEBYE LENGT™ o I7 1ONS ARE NRMWELL AN AND THEIR OFPECTIVE
TENPERATURE 15 COUAL TO THAT OF T ELECTRONS, ‘
SOLUTION VviA METROD QUTLIMED BY BEANSTEIN AND SASINMOwITZe

1P LOEY = 1e CURMRNT S MEAD lne (F LSEY » 2o AA |3 AEAD INe
OIENSION AL2007+86200)¢C12001601200)

OINENSION KAI20U1eRBIRUY) «XC L2302 +XD {2031 +33120001 +ALPMALI 2000 v
t YVI20003ETAPIROV0 1 ¢ZTANI 200006 ¥1 214 VORINEIZI ORI WFINALLIS) ¢

2 YRINAL IS cAVIRIZUO0) v 0P INAL 1 8

to
"
1
(R3]
112
2

(ke d

10

13

OINENSION INPTYILI
COWION EMPTY AR

wAvifey

READ INPUT TAPE BolleGUANTLSEY

PORMAT( 1BE10s3e¢18)

GO YO f115a)112eLSEY

CURGNT = QUANT

AASCUDINT / T+ 3449078

G0 TO 112

AdeQuant

CURBNTRAAS) 5049078

WRITE OUTPUT TABE €.12.CURRNT o84

FORMAY(ET] SIVER{CA. PACOE = ATTRACTED PARTICLES AT 2END TEMPERAT
JUBE = KONDIMENSIONAL CURRENT ® (PE12,0:84 o ARe1PEL2.9)
PRINT 1 TS.AVSE

FOOMATT 12+0 OEGIMN CASE 1%y

KAVSEaxdySEel

xSTIPe 38
FiINYn2eJ608
VEIX el eusFiny
00 134 Kul.xSTOW
KA(CIND

L IL 3L

xCiKted

<Dexbad

Ctle=Da%

Dtlre=]al

TO L3 Ke2.K5TOR

TNl X=]IOFLOA '29=] ) /FLOATF (20}
DIKIBD el y/FLOLTF IR

Ot IexO =1t

IF(ASSFLO(K I 1 avFIRYI138413e1)

138 D)= ISFINY

«D{C)akDii=]

13 ConTinue

1.2
™

27

164
9
123

29

an
p.T-4

w

99

3n
L1

199
193

192
200

e

©°

17 QUOTIENT OVEAFLOm 1620182

IF ACCURAATOR OVEAFLOW  131¢131
AC118240

Ai2¥mle?

LYRILRITS

Page 75
YTavleTrAM
YTIaY2eTERN]
1F(BI11) 1270250127
IFtv1avT12%62)428
IFIvE-vT1)2%5427428
Yiavy
IF JUOTIENTY OVERFLOS 12%.3104
1F ATCUMUALATOR OVEWFLOw 125493
v2svYri
Yiiravy
YiJIav2
GO TO (20.29¥sLTW

WAPK AMARY S )
5850243
IF{MARR =5) 26431433

ARILTE OUTPUT TAPE 6432454 YTTERM ST
FORMATIA2M UNASLE TY Suw POaLH uerliSe
1 6M TERM2IPLICeIaTH (STOP=]d)

GO0 TO 12

20 \PZ10e3sar VYTIRIPEIGLIe

Yiilav]

Yialev2
FTaPSTI2AA/(SESOSORTEIYY))
ETANGD s EXRF (R}
ALPHD ) o BH IS ETAPSN=ETANGI ) ¢ Y2}
ETADSIETARSD

ETANGRE TANGL

ALPHEALPRD

GO YO (POVPTI el INK

[P AL 98490190
IFLALFOLD ) 26959 ¢99

STRARDRSTRAR
STRAPSS=(SULD~5] SALPH/ (ALFOLD=ALPH )
XTRAPUK TRAPS |

SOLDeS

ALFOLO®ALPH
IFi8=13341135:3%¢34
1FI1vEidelavi) 8ol il T

35(<P s

YVI(KPIsY(l)
AVIRIRP ) uCURKNT /8082
ETARIXP ) OETAPS
ETANIKP ) sETANG
ALPMA LKD) s AL PM
LCITUTYY

Linceg

1F (32184001 119041904191
Zresasres

a0 To 232
AF(3-~4r 30012 1924192419]
2TEPRSTER /20y

w0 YO 20V

2TESSSTER /A0y

Ses=2TCR

IR (8=30499) 13001588426

Rese2vER

-N-N-X-]

(-]

i+ X1

oQUO ©

vLULvoOo

cCoOw

o © voo QoOU

c oo

Page 14§
Bt1180e0
B1210,C
B8EI1ed59
[ IERXT YL TV Y
08 19 K22 KSTOP, 2
(LA SNL IR L 1YY 2
BUKISALSALGALIR =}
<B(tienhix=a}
IF ARSI (OIKII~FIXNYIZI2D01]T
Bl raPin) oV XY
XS oxBiiol
60 10 13
Lo
CMAX 0 XMAROF (KB(X) anBiX =2}
00 180 frzex
DO 140 Jeaeke2
IFCIB e ) 1800 1624140
AR A XIAXOR (MMAR 2 KD | 161/ Sl ecitaivly
CONT It
SOMED (] 108K IFVE [NV {RMAN-KS N} }+ IR K=Re5)0IFLX=3201 00,
1 o tuMAN=xBIx=2})
eI D
2004040
CALL FORERSLZEL sk KMAX o W IXY s ek 30l 9xD)
CALL POWERS(IO0 X RHAR oW IRV e BoxXhoConl
SUReSUMeIEE~200
AlCragum Gl
ALK Y otmAX
IFIABINFCAIK) IFINYI (431430108
AKisa{LISVFIRY
AKX )axbix)e)
G0 73 180
17 JUOTIENT OVERFLOW 130¢163
(F ASCUMMA.ATOR QVERFLOW 130419
ZonTInug
G0 TO 160

26

137

22

162
140

143

192
146

18
162
19

139 X$TOPex~1
xpay

STEPe 1.0
S=122.0
$S12CeSTER
LInce]

AR YT
XTRAR D

*OLDeY( L)

YPLOeT(2)

Ye1reded

Y1836

Yi2)eded

v28ded
S1Ael,0/%002
Siasla

Stinstassia

D0 93 Jea«x5T0P:2
g

FACTR o FIXYISIRBI{I=-RBIi=21195)A
S1a510FACTR
SLInSI1oFALTR
TeRMepl 1105l

TERML oK loat L3881

FPage T
STrpesTER age 76
SSTAQTeS
waaw e
<PST kP
FNOREVINIT (85000 102055TART)
NAREENAR
JEND2S
IF{SSTART=Bev 118301834130
JEND =S
JARK e

183
104
18) Yii)evOLD

Y(2)sY®LD

SeSSTARY

CALL DEQST(SsSTYP2sYaYPRINEsUICHAGHNY
CHASPH

ETAPSRAL/{SOLEL0HTF (YOLD) )
ETANGSEXPE 1 =YOLOY

EPOLDeETHRS

ENOLDWE TANG

42 0O A3 nulenNDR

CALL OEQISeSTYRIZ2c Yo VPRIMELQeTHASEN)
¥Iede®

SlAsled/5ne2

Sissfa

DO *6 I KSTON 2

S1 & SLEFIAYRSIKBI]Iexdli=2)Ie50A
TEaMsB( 11851

vravZeTERM

IFATEAM) 19T 187

TESTS AASF(2400(¥2evT . (V2evT) )=l el
IPITESTIAT 140040

vZavy

<vasl

TREA LY L)Y e0e 0l 108008040

YRR v-ie}

ETABS AL/ {SESOSONTF(YT),
CTANGREUSF (=Y T)
TEITRETAPS»RPANG= L2 OE =00

tFITCAT 18043000

KYBaKvged

GO TO (40¢BRuBaBA) WX YS

CONT INuE

G0 YO 83

187

ab
A4

-
a8

a4 1P (N=Y R0 JARK I BR¢DRE) .

1M1 JARK e END ) 186188 158
JARK Y JARK e |

NDRS 2PNBR

STYPegTYR 200

o0 10 183

188 x3T0Pex §TQ0=Y

1P (KST0=0) 1070 1070 1606

WRITE OLUTEUT TABK 6.88:33TARTsVOLDIEROLDsENOLD +2sV (1) oY T4RTARS
T ETANGet s JARK 4KSTOP

11 34

B8 FORMMATZ L) IHOATTEMST TO AETRACE POWER SERIES SOLUTION USING MUNGE~X

JUTTA PRODUCES (NCONSISTENT RESULTEs THIS CASE DELEYED. 4
FRLILL IY 2 IRL CE2E I
a0 YO 10

~2reyTiny



Page 77 Page 78

3 WRITE QUTPUT TAPE 6¢36:¢SSTART ¢vOLO +EPOLDJENOLD 1 Se VL) o VZIETAPS o 86 STRADDeSTRAS
* a‘:vmm:‘t‘umuv STRAPSS - (SOLD -3} #ALPI/ (ALF OLD~ALIN)
9. Fm'l:?ﬂm-(u"l AGRELS wiTH POWER SERIES /7 TXGNSSVART. KTYRAPaK TRAPS 1
el EXTNSBNMHY L) ¢ 1ONBAYZ /G XN TAPS s
! uno!nnr. N JARK XSTOP /7 IXIP2E1243+0P2FLLeTe IPIEL2e9:002F 1 10T 3 SFIKP= 1139199170
3 16+1:18 ) 170 IFCYYIKP~13~304017Ce 70471

V0 1F(SS(KPal)=e8001 1101894130
199 1P1YL1)=00+008i bl e )

61 CONTInE
60 XTRAPSXK TRAS 91 WURITE OUTPUT TAME & A s STEP s So V{11 o INFINALC L) o 87 IRALLT )0
SeSSTART 1 YFINAL (13e00] oMAR H
SSI2EA-STED 83 FORMAT(SSMOUNABLE TO ACHIEVE SUFF ICIENT ACCURALY wiTH MBRE-UTTA
¥Y¢i1avOL0 1PROCEDURE /7 I1X1A:1P3E18eS /7 (S4LIXIZIPEE1IREY) b
V(Z2)eYPLD 40 10 10

CALL DEQST(SeSSIZEe2¢Y YPRINE +QeCHASMN)
T1 MARKEMARKS |

00 61 14000 . IPIKP=11161¢1812160
30L0e8 131 IFEYE1) 8000 1605 160s 168
ALFOLO=ALEM 189 $301320.0
YY(118040
I7(3=16.0001) “Se263e261 AVIR(1) 2340
275 IF(3-8e000112 2774278 ETAR(110040
270 SSIIE«=STEP,- ETAN(1 1000
G0 YO 281 ALPMA(] ) u0e0
277 17(5-4000011279279.200 160 KXP? XMANOF ¢ § ouP) §
280 SSIZES-STEP/ac0 SF INAL (MARK ) 5 S§ {KP] }
GO 10 281 VI INAL (MARK ) s VY (PN )
279 IF1S~2,00011281428].282 NF INAL [ HARK ) siPe]
282 SSIZE#-STER/840 17 (NARK=1 18T e 8T dby
GO 10 261 103 17 (ABSF ¢ SF INAL (ARG ) «5F [NAL LIARK=1 ) } 00001 106+ 86007
285 SSI2E==STEP/160 B0 1M CADSI (VI INAL {MARK } =Y INAL (AR~ } ) =0 001 198+ 8827
201 CONTINGE B9 1F (NP INAL {NARK ) =AF [MAL (MARK=1) 387+ 15087
CALL DEQISeSSIZEe2e Vs YORINE ¢+QsCHASPN) 138 XPToxP~]
Yisveyt NCOLE{KPTeL ) /2
v2mve2y 1F IKTRAP=11118e116¢108
IF4YEi1117601764177 116 WRITE QUTBUT TARE G411T:STRAM
117 FORMAT(20MCTRABPING RADIUS 1S 1ME16sSe 134 DEBVE CENGTHS )
176 WQITE QUTPUT TAAE G641 78SV (11 sSTEPINARK 1S WRITE OUTPUT TARE 6+Q9
178 FOANATIIONY YI1) NMEGATIVE. TRY SMALLER STERS. B9 FORMAT( 1N /720 1SKIME oBX 1Y 4 SXAMAVIR INGNETAR ; SASNETAN SR THALINA 3/
MARK aMARC S | 1 my
GG To 87 00 103 laleNCOL
108 WRITE QUTPUT TABE 641060 (85D oYY LI IAVIRII) (ETAR(S) dETANIL )0
D 177 ETAPSsAA/(S#SESARTF (Y1)} 1 ALPHAC I e Ju ] NPT INCOL ?
o ETANGREXRPE (=1 ) 106 FORMAT(2(SXF 100842 ¥e8: 277007 10¢4))
) ALPHRD SISO (ETAPS-ETANG ) oY E) @0 10 10
1FU1=01/XATIOKAT 183462465
62 1F13=1306121044100063 Q7 IF(NARK=-5190+91491
198 IF(VE12=0401)63e1724372 90 STEPegTER/ 2.0
xXPskPST
172 SS(xs)es KATe2OKAT
YYixPyev(l) 60 70 60
AVIR(KP ) sSCURRNT /5002 oo
ETAR(xP ) SETAPS
ETANIKP ) oETANG
ALPHA (KN ) SALPN
KPaxte |
83 IF(ALONIGA 165445
66 IF(ALFOLDIOS08+66
Page 19 Page B0
SUBROUT INE CHASPM(S (Mo Ve VINRINE ) CHASPN SUBROUT INE PORERS(EFS oV oXKMAXY o W [ XYV AVIKAVICYIRCY) POWERS
c THIS SUBPROGHAN 1S Y MAIN PIOGRAN &0 AND IS C THIOUGH ] DIMENSION AL200)C IR0 )eAVIR00) ¢CVL200)
c UNIVERSITY OF roaou‘;e“gonmm 11 SUBPROGRANS DL M;L;.g"o micn OIMENSION KAT2001+KCIRC0)sKAVIZ00) sxCYIRO0E
[ TOGETHER CARRY OUT A AUNGE=-KUTTA NUMERICAL luvcuulon PROCEOVAE o o erseves
L]
DIMERSION Y(2)YBRIME(2) ° $772040
DIVENSION EMPYY(103 KaKy
COMMON EMPTY . AA KMAKKMAXY
-] VFIXYsyFIxYy
NiLem 00 299 Imjek
YPRINE(L)IaYIR) ] At1rsavel)
viaviyy o cerracviny
v2evi2) XA¢TieAvelD
D YP22AA/(SOSEL0RTF (V) ) IENPF (aY] )a2eDovR/S 209 xCilisxcveld
. YPRIME(218¥P2
RETURN 1P (K-8} 300301301
[T 300 NETUN
301 Kmax~4
DO 302 1108eKMe2
12ek=11
D 302 STTESTTAACIIIOALIL) OYF VS (XMAN-KAT L] I=RALID))
-] EFSeSTTECIRISVRIXYRO{=KCIR))
] $Tve0,0
IPiK=12)30003034303
303 KNek=8
00 304 l1s8exkmed
00 204 12s4sKNMeg
tIsk=llalz
17¢13=4 13040308308
308 IF(KN=13)306¢ 300 308
O 308 STTOSTTOACLLI1OALIZIGALIIIOVF IRVES IXMARKA( ]} 1=KB( IR)=xA(13))
304 CONT I
AP SEFGeSTTEC(IIW INVERI-KCII) )
-] $7180.0
IP{R=18)300:3074307
307 xmexwlp

00 308 1iedsktsed
00 308 l8eamneg
00 300 I3saemnep
. ‘sagelj=l2=13
114441 300+ 309+ 209
300 "FixNela)308+3104310
o 310 n:::n:nmoumoum-ulumuvuuuu-uuu-nom-nnan.
u K
300 CONTIMUR
CPRAEPRATTEC (4 )10V |NVESL=RCIa) )
27vade0

1P In=2032000317: 17

00 313 tase«Rn
10galiell=]d=
1PLIB+4)310¢319: 310 N

%



Page 81
319 1F(KM-15)318¢3204320
0 320 STTQSTT#A(II)!A(12)0A€lS)iA(IQ)OA(lS)DVPIXYOO(KMAX-KA(ll)-KA(IZ)-
1 KACI3)=KA(IA)=KA(IS))
318 CONTINUE

D EFSSEFS+STTRC(S)MVF IXYRR(=KC(S)}
(o) STT=060
IF({K=24)300¢3274¢327

32° KMsK=20
DO 328 [1u4¢KMe2
DO 2328 1234.KMe2
DO 328 13=a¢kMe2
DO 328 14=4,KMs2
DO 328 1%34¢KMe2
16aKel1al2=13<14=15
IF(16-4)328¢329:32%
329 IF(KM=16)3264¢330¢330
D 330 STTaSTT+ACI1)I#ACIZ SACIZ)IRACTGIRACIS)RA(LO) #VF IXYHR (KMAX=KA(T] )=
1 KA(I2)=KRA(13)~KA(14)=KA(IS)=KA(26})
328 CONTINUE

o] EFSEEFSHSTTRC (S AVF IXYRR(=KC(6))
D STT=050
IF(K=28)3004337:337

337 KM=K=24
00 338 11=4¢KMe2
DO 338 [2m4.KMe2
DO 338 13=4¢KMe2
DO 338 1e=84KMe2
DO 338 1%5%44KMe2
DO 338 16:=44KMs2
[7TeK=l1=12=]3=]4=~15=16
IF(17-4)33843394339
339 IF(KM=17)338+340¢340
D 340 STTaSTTHACIIIRACI2)RA(II)IRA(IQIRALIS)IRALIG)RA( LT ) RVEIXYRE(KMAX=
T KACI1)=KA(12)=KA(]3)=KA(14)=KA(IS)=KA(16)=KA(]17))
338 CONTINUE

(o] EFSSEFS+STTRC(7)#VF IXYRE(=KC(T))
D STT=040
IF(K=32)300¢347+:347

347 KMaK=28
DO 348 11s4¢KMe2
00 348 [224.KMs2 )
DO 348 [334.KMe2
DO 348 14344KMs2
00 348 ISs4¢KMe2
DO 348 1634¢KMe2
DO 348 17=4¢KMe2
18aKk=l]=l2=]3=14=]5=]6=]7
IF(18-4)348¢349:349
349 IF(KM=18)348,350:3%0
L 330 STTaSTTHA(I1IRACI2)SACI)IRACTAIRACIS)RACTG)IRACITIRACLIB) WV IXYRE(
1 KMAX=KA(I1)=KA(12)=KA{13)=KA{I4)=KA(IS)=KA(I)=KA(IT)I=KA(I8))
348 CONTINUE

0 EFSsEFS+STTHC(8) #VF IXYHR(=KC(8))
D $TT040
1F (K=36)3000357+387
Page 83

387 KMaK=32
00 388 11%4:KMe2
DO 388 [2s4.KMe2
DO 388 13u4¢KMe2
DO 388 l4asdiKMe2
D0 388 18=4.KMe2
00 JIB8 16s4.KMe2
00 3:: 1 704eKMe2 !
18844KMs 2
19K=]]=]2=])n]4=]Su]g=]T7~]8
IP(19=4)358:359,389
389 IF(KN=19)388¢360¢360
D 30 STf'STTOA(IIDOA(IZ).A(IJ)CA(IQ)QA(IS)QA(IOiQAIl7).l(|.)'hil9).
1 VFIXVOQ(KHAX-KA(II)-KA(I!)-KA(lJ)-KA(IQ)-KA(IS)-K‘(lb)-KA(I?)-KA(
2 18)=KKA(19))
358 CONTINUE
EFSuErFSeSTTRC (D) MVF I XYRR(=KC (D))
(o] $7Te0,40

RETUAN
&ND

——— s —————e—]




APPENDIX J

Sample Output From Computer Programs

Pages 1 and 2 contain sample output from program 1
Pages 3 and 4 contain sample output from program 2
Page 5 contains the output from program 3

Page 6 contains sample output from program k4
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3 Pl GANMA L4 QT V2

KTl K12 avd R NCUB NEND NPRINY MODE XWIT KBO WCD
3 A ry 32 4 & 2 4 2 3

0300
COBPFICIENTY OF LINEAK TERN IN INITIAL APPROXINATION IS 2.500E-02
ATTRACY. 0

— _ENOM_ 30 0.9 QECREASE IN M1X. OQTl= 0,324000Q Q2s 0.0326000
o EMDa 50 ¥ R.362€ Q0 YINYe $,312€ 00 ESTD. GYCLES 1O END 12 AVGEs 1.2)32
? o BENRA S0 ¥R 8,820 OC YINY= A.261E Q0 FSTD. CYCLES TO END 20 AVGEs  0.8881
" e MEMOa 80 ¥s 8.200F OC YINYs Ba173E 00 ESTO. LYCLES TO END 23 SWGEs 0.1390
——KENOn 90 Y= A,190F GO0 YINYs B.160F OC FSTO. CYCLES ¥ END 27 A¥GEs_ 0.083)
aa
Mo 2.0070340¢ 02 Si= 0. AWM= 2.5573903E 00 OMEGA= 5.2076754€ 01
YNEGs 8. 142R407€ 00
1 aum- €ra xl ETaps ETANG 1 RETIZRP G0 x1 ETAPS ETANG
_9.14100€> —_
9 l.ouo—l.wuss-on 1.69859€ 01 4.15889€- oa 1.69702¢ o| 13 l.l!M-l 7ome-o| 1.34346€ 01 1.980806-07 1. 1o;o~e-ol
28 1.315.—-1.«;1115: 01 1.06829€ 01 2.36316¢- ~0s 1.77503¢ - o1 29 1.1909-1.015905-01 9,04784€ 00 |.|usse-o0 1. uous-on
T W x.uev-z.oune-u 4.50607€ 0C |.louue~oz 2.2086TE-G1 &5 l.usv-: ST3126-01 3,23300€ 00 3.90390:-&: 2.470236-01 T
. =01 2.1964SE 00 JA233E-21  § 00 243293 -0
. 57 z.zur-s.usm 02 1.00541€ 00 ;.osw.e 01 4. 14844€-01 61 z.sooo-l nwae-oz 1.56617€-01 0.002!1!-01 4.84697€-01
n

e EXECUTACN TIME IN PIAUTES - Qal8 . . .

3. 57!#-3.&96]35-03 ﬁ.3532l£ 3! 6-47057€- Ol b.b'-’hhf 01
413F 00

YANs

Page 3
e SYLINCRICAL PROBE CHARACTERISTIC
oL Ple GANNA on Q2
LS €201 0, 3240000 0.02324000
KTl KT2 K73 M NLUB NEKC NPRINTV FODE xwlY x80 MCO
¢ 4C0 Jco 4 2 2

—
KEND

PRy

KENDs 10 ¢

s 4 32
10 ¥YPOS* 0.00073C YNEGs 3.,2036  8.10%91 9.2012  9.170% 8,199

0.1719  8.1979  5.1732  4.19¢ 174

.9 CE\.IEASF TN HIX, 0TS 0.2916000 Q12 0.0?91600
= YAEGe 8.1558 8.]77s 5 8,18
30 ¥P0Ss 2,000C0C YNEGH Y1864  8,185)3 ‘.labl 8.18%% 8.1860

TTLINKe & SETAG(L)» l."ﬂJ! 00
A

5 REND
4

S

l

T 7'11

. 33

49

KENC® 30 ReSULT SUFFICIENTUY ACCURATE. YINY» §.186E 00

vpOSa 2. oous;se-cs YAEGs 8,1854517€ 00
ETA

* 0,00002C YNEGe  E.18%8 81857 8.1857  6.18%6 _8.18%
RIRAPe {00 BTRAPs 5,08234E€ O}

8,1876 8.1842 0.1089 l.}lh’ _
6.18%8 0.18%9 5,18% s.18 57 -

6.10%  6.18%%

€TAPS ETANG | Ril)/RP

x! ETAPS ETANG

LI ETA
1.0000-1,71089€-01 2.U0030€ 01 1.030586-09 1.71035¢-01 5 1. 0611-!.70&77&-0[ T.0%039E 01 9.20117€-09 1.70675¢-01

BaQ810-1e TOTRTE-01 LaOOTILE Ol 4,255706-08 |, 70P20E-00 13 Reldes-1oP1313€6-0) 3.”21!( Ol 2.000906-07 1.713446-02
l.loos~l T2¢31€- 0[ Lo30404€ 01 9,753726-07 1.727166-00 21  1.2500-1.7%0926-01 1.223936 01 4.03441E-06 1.75079€-01 ~
[)

03 1. 70783 41, $4300¢
1.uco-x.9lvzn-on 7.42635€ 00 5.933976-04 1.92630£-01 1.9929-1.99498€-01 5. 08990€ 00 2. nz:{’-o:"}.o«ut-m

£ 32039€-01

1G3QCE-C1 %2 93200¢ UG 1.145536-02 2.23360F-00 45 1.7057-2,031626-0L 3.1791¢¢ 00 4.162006-02 2,51203€-01
1!23"-41 2:15223€ 0C 1.16229€-01 2.929026~01 53 2.0833-1.121308-00 1.4291r 00 2.394038-01 3.806008-01
——Al_2,2721~52228458-02 9494330624 3 T0I4LE-0L 44 192206-C1 o1 2.9200~1.774)18=-0]

(1] ¢o7”0-5.70513!-ﬂ! o.Oh)tE-Ol ..“IQSE-OI 5.50333F-01 @9  3.1250-2.05098£-03 5.0030%E-31 6.01315¢-01 ¢.0983¥2-01

YPNs 6.5179&&-01 “‘W' 2458847€ 9C  Yins z.nl'\ee 00

ERECUTIUN TIME [N MINLTES 0.52
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2 1a31012€-G1 4.71049%-01 o,08101€-00 __

SPUPRICAL PROGE CHARACTERISVIC * AEPELLED PARTICLES AT 26RO VANPEAATURE

- [ [] [

1 & 2 40 N0 20 2 31

" [P
BPLATIVE PAROR 1N SHEATH COGE POTENTIAL GRADIENT  -0,00012¢ NIV SMEATW # et
i | TISTIR & Ot T

TR WESIE Y SUPPTCIENTLY SCCIMATE, VIWVE 4,WWRe-0f

T PR TR AR Y SUPFTCTERVTY SCTURETY S YIRYY T, YeeR0T

#ENNe 10 QFSULT SUPFICIENTLY ACCURATY, YiNve 4.1708

RFRGE TUTEFRIKT SIFFICTANTIY ACCUNRTE, YIWYe 3,388%¢ OO T T

RENDe 40 RESULY SUPRICIENTLY ACCURATE. YINYa-9,349¢ 00
KEWfls  AC RFSULY SUPFICIPNTLY ACCURATE. VINVE 1.1308 00

CPNOe 90 RFSULTY SUFFICIENTLY ACCURATE. YINVe-2.0088-03

KENDe 100 RFSILT SUFFICTENTLY ACCURAYE, YINYe 3.119F-02 T

FWNe 140 RFGRT SUFFICIENTLY ACCURATY. YINVe-3,9541-0)

‘afihie 1460 RESLY SUPPICTENTLY ACCURATE. YINVe 1.9%08-0
TV ETTIVWOT S0 2. TNITF 01 Bwe 3.

ve 9.)“0‘"” al

Reirme (31 3] 1A My 1]

l 100000 17073240 00-1.90000000 81 1.707520M8 0 ]

S8 1801 L. ATSR2IN 00-0.00414000 00 1.4TSR0IM B0 ]
- v IR TV -0 -t.nm

" ).t”’) 0.09501 90801 1. 4049 00 B o -0 19

17 L0%44) 20780000000 I.ﬂ““li-.l ’o."l“":-l: }:

l '.l ;’f

I, 11 l‘.""ﬂﬂ S0000Se - 3) 'o"“’. -1 ”»
sl Awm v.uv«m-u-:.mnu&-n "-“.ﬂll'-‘l -

FRRCUTICR YYWE 6 REMUTES 0.1

S e — s - o ——

ATI0e 2, TO00TI00 80 STMAPS 5, S8BeLTE 00

s130/m n u
% SYTISINY SO0:NTISIVr W TiOTIVIOW 60

- 9
290039 %, - 1,0910000-08

LR RS-t W=t vt e T o
:.“r; r.%a-u-a.vmmn T.005000% - 01
% 0 C G oot bi i)

A, ] o Do . ¥ -9

4 5IVS T EMIIMIIE-01-D. E0MTIE-00 1 EMITIE-01
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SPMERICAL PRODE CHARACTERISTIC * REPELLED PARTICLES AY ZERD TEMPERATUCE
PIFF PROAYE SHUDGE an ]

=1.500F_D1 1,07E 00 4.368F 00 0.1000070 0,%000000 . § =
T TURNT CRYS CTNTETAT T #ONAUS NEND NPRINT MODS MES e
? 4 3 40 300 120 2 i t .
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